Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(10): 7359-7369, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28243632

ABSTRACT

Understanding the effects of carbon nanotubes (CNTs) and ultraviolet (UV) irradiation on solvent transport in polymers is of practical importance for the applications of polymer-CNT composites in electronics and photonics. The transport behavior of methanol in poly(methyl methacrylate)-multiwalled carbon nanotube (PMMA-MWCNT) composites with and without UV light irradiation has been studied. The anomalous transport has been investigated as a function of the weight percentage of MWCNTs and UV dose in the temperature range of 30-50 °C. The anomalous transport consists of Case I (controlled by concentration gradient) and Case II (controlled by stress relaxation) transport; both UV irradiation and the addition of MWCNTs in PMMA enhance the transport of methanol. The activation energies for Case I and Case II transport decrease with the increase of UV dose for the PMMA-MWCNT plates with the same weight percentage of MWCNTs. Without UV irradiation, the activation energy for Case I transport of methanol decreases with the increase of the weight percentage of MWCNTs, and the activation energy for Case II transport increases with the increase of the weight percentage of MWCNTs.

2.
J Hazard Mater ; 163(1): 152-7, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-18657362

ABSTRACT

This research is intended to decompose organic substances in municipal wastewater with nano- and nonnano-scale electrocatalytic electrodes. As an anode, the nano-scale electrodes included lab-made TiO(2) and Cu(2)O electrodes; the nonnano-scale electrodes were a commercial TiO(2) and graphite plate. According to experimental results, the nano- and nonnano-scale catalytic electrodes can effectively remove the organic pollutants in the municipal wastewater. The perforated TiO(2) electrode is the best for eliminating the chemical oxygen demand (COD), and its efficiency is about 90% (COD decreases from 400 to 40 mg L(-1)). The conductivity of municipal wastewater and the electro-catalytic process will increase the pH and eventually remains in the neutral range. The conductivity of municipal wastewater can be lowered to some degrees. The most attractive discovery of electro-catalytic process is that the dissolved oxygen (DO) in the municipal wastewater can be increased by the TiO(2) electrode (nonnano-scale) around 4-6 mg L(-1), but few DO is produced by the nano-scale electrocatalytic electrode.


Subject(s)
City Planning/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Catalysis , Electrodes/classification , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Oxygen/chemistry , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...