Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biochem Funct ; 42(4): e4034, 2024 06.
Article in English | MEDLINE | ID: mdl-38715189

ABSTRACT

L1 syndrome, a neurological disorder with an X-linked inheritance pattern, mainly results from mutations occurring in the L1 cell adhesion molecule (L1CAM) gene. The L1CAM molecule, belonging to the immunoglobulin (Ig) superfamily of neurocyte adhesion molecules, plays a pivotal role in facilitating intercellular signal transmission across membranes and is indispensable for proper neuronal development and function. This study identified a rare missense variant (c.1759G>C; p.G587R) in the L1CAM gene within a male fetus presenting with hydrocephalus. Due to a lack of functional analysis, the significance of the L1CAM mutation c.1759G>C (p.G587R) remains unknown. We aimed to perform further verification for its pathogenicity. Blood samples were obtained from the proband and his parents for trio clinical exome sequencing and mutation analysis. Expression level analysis was conducted using western blot techniques. Immunofluorescence was employed to investigate L1CAM subcellular localization, while cell aggregation and cell scratch assays were utilized to assess protein function. The study showed that the mutation (c.1759G>C; p.G587R) affected posttranslational glycosylation modification and induced alterations in the subcellular localization of L1-G587R in the cells. It resulted in the diminished expression of L1CAM on the cell surface and accumulation in the endoplasmic reticulum. The p.G587R altered the function of L1CAM protein and reduced homophilic adhesion capacity of proteins, leading to impaired adhesion and migration of proteins between cells. Our findings provide first biological evidence for the association between the missense mutation (c.1759G>c; p.G587R) in the L1CAM gene and L1 syndrome, confirming the pathogenicity of this missense mutation.


Subject(s)
Mutation, Missense , Neural Cell Adhesion Molecule L1 , Humans , Male , HEK293 Cells , Hydrocephalus/genetics , Hydrocephalus/metabolism , Hydrocephalus/pathology , Neural Cell Adhesion Molecule L1/genetics , Neural Cell Adhesion Molecule L1/metabolism , Pedigree , Infant, Newborn
2.
Clin Genet ; 102(5): 451-456, 2022 11.
Article in English | MEDLINE | ID: mdl-35908152

ABSTRACT

Split hand/foot malformation (SHFM) is a clinically heterogeneous genetic disorder, which is mainly characterized by median clefts of the hand/feet due to the absence of the central digital rays. Several subgroups of SHFM have been identified, including SHFM1 to SHFM6. SHFM3 is an autosomal dominant disease, which has been identified to associate with a 500 kb microduplication at 10q24. The duplication involved several genes, including LBX1, BTRC, POLL, FBXW4, and so forth. In the study, using trio clinical exome sequencing, a 120 kb microduplication containing only BTRC were identified in a Chinese family affected with SHFM3. Further confirmation was performed using qRT-PCR assay, which showed that the 120 kb duplication was co-segregated with SHFM phenotypes in the family. It is the smallest duplication which has ever been reported relating to SHFM3. Furthermore, the transcription levels of BTRC mRNA in lymphocyte of the proband was significantly higher than that in the healthy control. The study provided evidence for the limb malformation caused by abnormal BTRC expression, and suggested that next generation sequencing could provide more precise diagnosis to SHFM3 patients.


Subject(s)
Foot Deformities, Congenital , Hand Deformities, Congenital , Limb Deformities, Congenital , China , Foot Deformities, Congenital/genetics , Hand Deformities, Congenital/genetics , Humans , Limb Deformities, Congenital/genetics , Micrognathism , Pedigree , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL
...