Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 123: 42-47, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33561768

ABSTRACT

The e-waste problem needs be tackled under a global framework, based upon the understanding that e-waste is a global issue and thus a shared responsibility. To illustrate this point, a cost-benefit analysis of metal recovery from e-waste was conducted with Europe, North America and China as representative regions of e-waste producers. The final profit associated with the entire e-waste recycling process was estimated by deducing the energy costs of metal recovery from the revenues of the manually dismantling stage and the metal recovery stage. Then, the potential job opportunities were estimated based on the final profit from the local e-waste recycling and average wage per year. Overall, profits of manually dismantling 1 ton of e-waste varied widely, but the final profits were positive. The potential job opportunities generated by local e-waste recycling ranged from 4.65 × 105 person/year for North America to 2.03 × 106 for China person/year. According to our study, the environmental load of 1 kg of e-waste would be 1-9 USD, indicating that this is the cost required to offset the environmental consequences of each kilogram of e-waste. By applying environmental load to per capita, the concept can act as a tool to encourage countries to fairly share the environmental responsibility of e-waste based on their e-waste generation. Based on this, we propose an e-waste emissions trading system that set a cap on the total amount of e-waste that could be generated globally and per country, to reduce e-waste and carbon emissions.


Subject(s)
Electronic Waste , China , Cost-Benefit Analysis , Electronic Waste/analysis , Europe , Policy , Recycling
2.
Sci Total Environ ; 612: 490-491, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28865266

ABSTRACT

Overall, total exhaust emissions of NOX, VOC and particulate matter (PM) declined, though vehicles in use continued to increase in China. This suggested that contribution of motor vehicle exhaust to haze in China may be exaggerated. A higher frequency of haze episodes in China with lower total emissions fraction from vehicle exhaust compared with those in the USA confirmed that there exists no strict causality between vehicle and haze. No significant correlation (p<0.05) between haze days and the contribution of vehicles to airborne PM2.5 (particulates that are <2.5µm in aerodynamic diameter) or car ownerships. All results revealed again that vehicle exhaust is an overstated cause for haze formation in China.

3.
Environ Pollut ; 233: 1104-1112, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29033174

ABSTRACT

The quality of indoor environments has a significant impact on public health. Usually, an indoor environment is treated as a static box, in which physicochemical reactions of indoor air contaminants are negligible. This results in conservative estimates for primary indoor air pollutant concentrations, while also ignoring secondary pollutants. Thus, understanding the relationship between indoor and outdoor particles and particle-bound pollutants is of great significance. For this reason, we collected simultaneous indoor and outdoor measurements of the size distribution of airborne brominated flame retardant (BFR) congeners. The time-dependent concentrations of indoor particles and particle-bound BFRs were then estimated with the mass balance model, accounting for the outdoor concentration, indoor source strength, infiltration, penetration, deposition and indoor resuspension. Based on qualitative observation, the size distributions of ΣPBDE and ΣHBCD were characterized by bimodal peaks. According to our results, particle-bound BDE209 and γ-HBCD underwent degradation. Regardless of the surface adsorption capability of particles and the physicochemical properties of the target compounds, the concentration of BFRs in particles of different size fractions seemed to be governed by the particle distribution. Based on our estimations, for airborne particles and particle-bound BFRs, a window-open ventilated room only takes a quarter of the time to reach an equilibrium between the concentration of pollutants inside and outside compared to a closed room. Unfortunately, indoor pollutants and outdoor pollutants always exist simultaneously, which poses a window-open-or-closed dilemma to achieve proper ventilation.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Flame Retardants/analysis , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Particle Size , Ventilation
4.
Waste Manag ; 69: 393-399, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28803763

ABSTRACT

The recovery of four dominant plastics from electronic waste (e-waste) using mixed solvent extraction was studied. The target plastics included polycarbonate (PC), polystyrene (PS), acrylonitrile butadiene styrene (ABS), and styrene acrylonitrile (SAN). The extraction procedure for multi-polymers at room temperature yielded PC, PS, ABS, and SAN in acceptable recovery rates (64%, 86%, 127%, and 143%, respectively, where recovery rate is defined as the mass ratio of the recovered plastic to the added standard polymer). Fourier transform infrared spectroscopy (FTIR) was used to verify the recovered plastics' purity using a similarity analysis. The similarities ranged from 0.98 to 0.99. Another similar process, which was denoted as an alternative method for plastic recovery, was examined as well. Nonetheless, the FTIR results showed degradation may occur over time. Additionally, the recovery cost estimation model of our method was established. The recovery cost estimation indicated that a certain range of proportion of plastics in e-waste, especially with a higher proportion of PC and PS, can achieve a lower cost than virgin polymer product. It also reduced 99.6%, 30.7% and 75.8% of energy consumptions and CO2 emissions during the recovery of PC, PS and ABS, and reduced the amount of plastic waste disposal via landfill or incineration and associated environmental impacts.


Subject(s)
Electronic Waste/analysis , Plastics/analysis , Refuse Disposal/methods , Plastics/chemistry , Polystyrenes/chemistry , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...