Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(6)2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34202986

ABSTRACT

Titanium dioxide has excellent chemical, electrical, and optical properties, as well as good chemical stability. For that reason, it is widely used in many fields of study and industry, such as photocatalysts, organic solar cells, sensors, dental implants, and other applications. Many nanostructures of TiO2 have been reported, and electrospinning is an efficient practical technique that has a low cost and high efficiency. In various studies on improving performance, the researchers created nanofibers with suitable microstructures by changing various properties and the many process parameters that can be controlled. In this study, PVP/TiO2 nanofibers were fabricated by the electrospinning process. The diameters of the nanofibers were controlled by various parameters. To understand the effects on the diameter of the nanofibers, various process parameters were controlled: the molecular weight and concentration of the polymers, deionized water, applied voltage, fluid velocity, and concentration of titanium precursor. The average diameter of the PVP nanofibers was controlled in a range of 42.3 nm to 633.0 nm. The average diameter of the PVP/TiO2 nanofibers was also controlled in a range of 63.5 nm to 186.0 nm after heat treatment.

2.
Nanomaterials (Basel) ; 10(7)2020 Jul 04.
Article in English | MEDLINE | ID: mdl-32635421

ABSTRACT

Photocatalysts are the most important technology in air pollution removal and the detoxification of organic materials. Doping and complexation are among the most used methods to improve the efficiency of photocatalysts. Titanium dioxide and zinc oxide nanomaterials are widely used materials for photocatalysts and the degradation of toxic materials. Their mixed structure can be fabricated by many methods and the structure affects their properties. Nanofibers are efficient materials for photocatalysts due to their vertically formed structure, which improves the charge separation of photoelectrons. We fabricated them by an electrospinning process. A precursor consisting of titanium 4-isopropoxide, zinc acetate dihydrate and polyvinylpyrrolidone was used as a spinning solution for a mixed structure of titanium dioxide and zinc oxide with different molar ratios. They were then calcined, crystallized by heat treatment and analyzed by thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM) and energy-dispersive spectroscope (EDS). After annealing, the average diameters of the Ti-Zn complex oxide nanofibers were 237.6-278.6 nm with different salt ratios, and multiple crystalline structures were observed, namely TiO2, ZnO, ZnTiO3 and Zn2TiO4. We observed the photocatalytic performance of the samples and compared them according to the photodegradation of methylene blue. The methylene blue concentration decreased to 0.008-0.650 after three hours, compared to an initial concentration of 1, with different metal oxide structures.

3.
J Nanosci Nanotechnol ; 20(6): 3582-3587, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-31748055

ABSTRACT

TiO2 is a significant n-type semiconducting material because of its superior electric and photocatalytic properties. Although this material has been extensively studied as a semiconductor electrode for dye-sensitized solar cells for its inherent bandgap and its excellent electrical and chemical properties, the photoelectric efficiency is nevertheless lower than that of the Si-based solar cells, which is generally reported as 13-27%. On the other hand, various carbon structures have been studied to increase the overall charge transport efficiency by reducing the charge transport resistance in the cell while having high electric conductivity. These results are expected to improve the photoelectric conversion efficiency when applied to dye-sensitized solar cells. We fabricated a TiO2/multi-wall carbon nanotube (MWCNT) core-shell structure by a hydrothermal method. The TiO2 anatase phase in the TiO2/MWCNT core-shell structure was confirmed by X-ray diffraction (XRD). The core-shell nanostructure with a diameter of 127 nm to 211 nm was observed by field emission scanning electron microscope (FE-SEM). The morphology of the TiO2/MWCNT core-shell nanocomposite was also analyzed by transmission electron microscope (TEM). The Fourier-Transform Infrared Spectrometer (FT-IR) and Brunauer Emmett and Teller (BET) method were used to observe the chemical bonding and specific surface area of the TiO2/MWCNT core-shell nanocomposite, respectively. The TiO2/MWCNT core-shell composites had a larger specific surface area of 92.00 m²/g, a larger pore volume of 0.33 cm³/g, and a larger pore size of 65.21 nm than commercial TiO2 nanoparticles (P25). The TiO2/MWCNT core-shell structure may provide a high-speed path for photoelectrons to pass quickly and will be useful for various applications, such as solar cells and photocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...