Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 237
Filter
1.
Adv Mater ; : e2405519, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801117

ABSTRACT

Pushing intercalation-type cathode materials to their theoretical capacity often suffers from fragile Li-deficient frameworks and severe lattice strain, leading to mechanical failure issues within the crystal structure and fast capacity fading. This is particularly pronounced in layered oxide cathodes because the intrinsic nature of their structures is susceptible to structural degradation with excessive Li extraction, which remains unsolved yet despite attempts involving elemental doping and surface coating strategies. Herein, we develop a mechanochemical strengthening strategy through gradient disordering structure to address these challenges and push the LiCoO2 layered cathode approaching the capacity limit (256 mAh g-1, up to 93% of Li utilization). This innovative approach also demonstrates exceptional cyclability and rate capability, as validated in practical Ah-level pouch full cells, surpassing the current performance benchmarks. Comprehensive characterizations with multiscale X-ray, electron diffraction and imaging techniques unveil that the gradient disordering structure notably diminishes the anisotropic lattice strain and exhibits high fatigue resistance, even under extreme delithiation states and harsh operating voltages. Consequently, our designed LiCoO2 cathode impedes the growth and propagation of particle cracks, and mitigates irreversible phase transitions. This work sheds light on promising directions towards next-generation high-energy-density battery materials through structural chemistry design. This article is protected by copyright. All rights reserved.

2.
Biochim Biophys Acta Mol Cell Res ; : 119751, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38776988

ABSTRACT

Akkermansia muciniphila (A. muciniphila), a probiotic, has been linked to macrophage phenotypic polarization in different diseases. However, the role and mechanisms of A. muciniphila in regulating macrophage during ulcerative colitis (UC) are not clear. This research aimed to examine the impact of A. muciniphila on dextran sulfate sodium (DSS)-induced acute colitis and elucidate the underlying mechanism related to macrophage phenotypic polarization. A. muciniphila inhibited weight loss, increased disease activity index, and ameliorated inflammatory injury in colonic tissues in mice induced with DSS. Furthermore, A. muciniphila reduced macrophage M1 polarization and ameliorated epithelial barrier damage in colonic tissues of DSS-induced mice through inhibition of histone deacetylase 5 (HDAC5). In contrast, the effect of A. muciniphila was compromised by HDAC5 overexpression. HDAC5 deacetylated H3K9ac modification of the disabled homolog 2 (DAB2) promoter, which led to repressed DAB2 expression. DAB2 overexpression blocked HDAC5-induced pro-inflammatory polarization of macrophages, whereas knockdown of DAB2 resulted in the loss of effects of A. muciniphila against colonic injury in DSS-induced mice. Taken together, A. muciniphila-induced loss of HDAC5 hampered the deacetylation of DAB2 and enhanced the expression of DAB2. Our findings propose that A. muciniphila may be a possible probiotic agent for alleviating DSS-induced acute colitis.

3.
Sci Adv ; 10(21): eadn4441, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781334

ABSTRACT

Traditional cathode chemistry of Li-ion batteries relies on the transport of Li-ions within the solid structures, with the transition metal ions and anions acting as the static components. Here, we demonstrate that a solid solution of F- and PO43- facilitates the reversible conversion of a fine mixture of iron powder, LiF, and Li3PO4 into iron salts. Notably, in its fully lithiated state, we use commercial iron metal powder in this cathode, departing from electrodes that begin with iron salts, such as FeF3. Our results show that Fe-cations and anions of F- and PO43- act as charge carriers in addition to Li-ions during the conversion from iron metal to a solid solution of iron salts. This composite electrode delivers a reversible capacity of up to 368 mAh/g and a specific energy of 940 Wh/kg. Our study underscores the potential of amorphous composites comprising lithium salts as high-energy battery electrodes.

4.
Poult Sci ; 103(7): 103784, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38713992

ABSTRACT

Hatchability could be quite different among individuals of indigenous chicken breed which might be affected by the egg quality. In this study, hatchability was individually recorded among 800 forty-wk-old Huainan partridge chickens. The chickens were then divided into high and low hatchability groups (HH and LH group) with 50 birds in each group. Egg quality was further determined in the 2 groups. Eight birds from each group were selected for slaughtering and tissue, responsible for egg formation, collection for structure observation by staining and candidate gene expression by transcriptome analysis. The hatchability in HH was 100% and 61.18% in LH. The eggshell thickness and shell strength were significantly lower, while the albumen height and Haugh unit were significantly higher in HH group than those in LH group (P < 0.05). The magnum weight and index, and the expression of polypeptide N-acetylgalactosaminyltransferase 9 (GALNT9), which responsible for thick albumen synthesis, in HH group were also significantly higher than that of LH group (P < 0.05). Compared with the LH group, there were 702 differentially expressed genes (DEGs) in HH group, of which 402 were up-regulated and 300 were down-regulated. Candidate genes of calbindin 1 (CALB1) and solute carrier family 26 member 9 (SLC26A9), which regulate calcium signaling pathway so as to affect Ca2+ transportation, exhibited significant high and low expression, respectively, in HH group compared to those in LH group (P < 0.05). Therefore, indigenous chicken with high expression of GALNT9 in magnum to form thick albumen to provide more protein for embryo, while high CALB1 and low expression of SLC26A9 to decrease Ca2+ transportation so as to form a thinner eggshell and provide better gas exchange during embryo development.

5.
Small ; : e2400915, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597683

ABSTRACT

Hole transporting layers (HTLs), strategically positioned between electrode and light absorber, play a pivotal role in shaping charge extraction and transport in organic solar cells (OSCs). However, the commonly used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, with its hygroscopic and acidic nature, undermines the operational durability of OSC devices. Herein, an environmentally friendly approach is developed utilizing nickel acetate tetrahydrate (NiAc·4H2O) and [2-(9H-carbazol-9-yl)ethyl] phosphonic acid (2PACz) as the NiAc·4H2O/2PACz HTL, aiming at overcoming the limitations posed by the conventional PEDOT:PSS one. Encouragingly, a remarkable power conversion efficiency (PCE) of 19.12% is obtained for the OSCs employing NiAc·4H2O/2PACz as the HTL, surpassing that of devices with the PEDOT:PSS HTL (17.59%), which is ranked among the highest ones of OSCs. This improvement is attributed to the appropriate work function, enhanced hole mobility, facilitated exciton dissociation efficiency, and lower recombination loss of NiAc·4H2O/2PACz-based devices. Furthermore, the NiAc·4H2O/2PACz-based OSCs exhibit superior operational stability compared to their PEDOT:PSS-based counterparts. Of significant note, the NiAc·4H2O/2PACz HTL demonstrates a broad generality, boosting the PCE of the PM6:PY-IT and PM6:Y6-based OSCs from 16.47% and 16.79% (with PEDOT:PSS-based analogs as HTLs) to 17.36% and 17.57%, respectively. These findings underscore the substantial potential of the NiAc·4H2O/2PACz HTL in advancing OSCs, offering improved performance and stability, thereby opening avenue for highly efficient and reliable solar energy harvesting technologies.

6.
Spinal Cord Ser Cases ; 10(1): 27, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654004

ABSTRACT

STUDY DESIGN: Randomised controlled trial with computerised allocation, assessor blinding and intention-to-treat analysis. OBJECTIVE: This study wanted to prove that cervicocranial flexion exercise (CCFE) and superficial neck flexor endurance training combined with common pulmonary rehabilitation is feasible for improving spinal cord injury people's pulmonary function. SETTING: Taoyuan General Hospital, Ministry of Health and Welfare: Department of Physiotherapy, Taiwan. METHOD: Thirteen individuals who had sustained spinal cord injury for less than a year were recruited and randomised assigned into two groups. The experimental group was assigned CCFEs and neck flexor endurance training plus normal cardiopulmonary rehabilitation. The control group was assigned general neck stretching exercises plus cardiopulmonary rehabilitation. Lung function parameters such as forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), FEV1/FVC, peak expiratory flow rate (PEFR), inspiratory capacity (IC), dyspnoea, pain, and neck stiffness were recorded once a week as short-term outcome measure. RESULT: The experimental group showed significant time effects for FVC (pre-therapy: 80.4 ± 21.4, post-therapy: 86.9 ± 16.9, p = 0.021, 95% CI: 0.00-0.26) and PEFR (pre-therapy: 67.0 ± 33.4; post-therapy: 78.4 ± 26.9, p = 0.042, 95% CI: 0.00-0.22) after the therapy course. Furthermore, the experimental group showed significant time effects for BDI (experimental group: 6.3 ± 3.0; control group: 10.8 ± 1.6, p = 0.012, 95% CI: 0.00-0.21). CONCLUSION: The exercise regime for the experimental group could efficiently increase lung function due to the following three reasons: first, respiratory accessory muscle endurance increases through training. Second, posture becomes less kyphosis resulting increasing lung volume. Third, the ratio between superficial and deep neck flexor is more synchronised. IRB TRIAL REGISTRATION: TYGH108045. CLINICAL TRIAL REGISTRATION: NCT04500223.


Subject(s)
Exercise Therapy , Spinal Cord Injuries , Humans , Male , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/physiopathology , Female , Adult , Pilot Projects , Middle Aged , Single-Blind Method , Exercise Therapy/methods , Endurance Training/methods , Respiratory Function Tests , Lung/physiopathology , Lung/physiology , Treatment Outcome
7.
Bioresour Technol ; 400: 130663, 2024 May.
Article in English | MEDLINE | ID: mdl-38583671

ABSTRACT

The measurement of germination index (GI) in composting is a time-consuming and laborious process. This study employed four machine learning (ML) models, namely Random Forest (RF), Artificial Neural Network (ANN), Support Vector Regression (SVR), and Decision Tree (DT), to predict GI based on key composting parameters. The prediction results showed that the coefficient of determination (R2) for RF (>0.9) and ANN (>0.9) was higher than SVR (<0.6) and DT (<0.8), suggesting that RF and ANN displayed superior predictive performance for GI. The SHapley additive exPlanations value result indicated that composting time, temperature, and pH were the important features contributing to GI. Composting time was found to have the most significant impact on GI. Overall, RF and ANN were suggested as effective tools for predicting GI in composting. This study offers the reliable approach of accurately predicting GI in composting processes, thereby enabling intelligent composting practices.


Subject(s)
Composting , Machine Learning , Neural Networks, Computer , Composting/methods , Germination/physiology , Temperature , Hydrogen-Ion Concentration , Soil/chemistry , Organic Chemicals
8.
Brain ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643019

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease with uncertain genetic predisposition in most sporadic cases. Spatial architecture of cell types and gene expression is the basis of cell-cell interactions, biological function and disease pathology, but is not well investigated in human motor cortex, a key ALS relevant brain region. Recent studies indicated single nucleus transcriptomic features of motor neuron vulnerability in ALS motor cortex. However, it remains largely unclear what is the brain regional vulnerability of ALS-associated genes, and what is the genetic link between region-specific genes and ALS risk. Here, we developed an entropy-weighted differential gene expression matrix-based tool (SpatialE) to identify the spatial enrichment of gene sets in spatial transcriptomics (ST). We benchmarked SpatialE against another enrichment tool (Multimodal Intersection Analysis, MIA) using ST data from both human and mouse brain tissues. To investigate regional vulnerability, we analyzed three human motor cortex and two dorsolateral prefrontal cortex tissues for spatial enrichment of ALS-associated genes. We also used Cell2location to estimate the abundance of cell types in ALS-related cortex layers. To dissect the link of regionally expressed genes and ALS risk, we performed burden analyses of rare loss-of-function (LOF) variants detected by whole-genome sequencing in ALS patients and controls, and then analyzed differential gene expression in the TargetALS RNA-seq dataset. SpatialE showed more accurate and specific spatial enrichment of regional cell type markers than MIA in both mouse brain and human dorsolateral prefrontal cortex. Spatial transcriptomic analyses of human motor cortex showed heterogenous cell types and spatial gene expression profiles. We found that 260 manually curated ALS-associated genes are significantly enriched in layer 5 (L5) motor cortex, with abundant expression of upper motor neurons and L5 excitatory neurons. Burden analyses of rare LOF variants in L5-associated genes nominated NOMO1 as a novel ALS-associated gene in a combined sample set of 6,814 ALS patients and 3,324 controls (P = 0.029). Gene expression analyses in central nervous system tissues revealed down-regulation of NOMO1 in ALS, which is consistent with a LOF disease mechanism. In conclusion, our integrated ST and genomic analyses identified regional brain vulnerability in ALS and the association of a L5 gene (NOMO1) with ALS risk.

10.
Angew Chem Int Ed Engl ; 63(17): e202319627, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38443313

ABSTRACT

High-performing n-type polymers are crucial for the advance of organic electronics field, however strong electron-deficient building blocks with optimized physicochemical properties for constructing them are still limited. The imide-functionalized polycyclic aromatic hydrocarbons (PAHs) with extended π-conjugated framework, high electron deficiency and good solubility serve as promising candidates for developing high-performance n-type polymers. Among the PAHs, phenanthrene (PhA) features a well-delocalized aromatic π-system with multiple modifiable active sites . However, the PhA-based imides are seldom studied, mainly attributed to the synthetic challenge. Herein, we report two functionalized PhAs, CPOI and CPCNI, by simultaneously incorporating imide with carbonyl or dicyanomethylene onto PhA. Notably, the dicyanomethylene-modified CPCNI exhibits a well stabilized LUMO energy level (-3.84 eV), attributed to the synergetic inductive effect from imide and cyano groups. Subsequently, based on CPOI and CPCNI, two polymers PCPOI-Tz and PCPCNI-Tz were developed. Applied to organic thin-film transistors, owing to the strong electron-deficiency of CPCNI, polymer PCPCNI-Tz shows an improved electron mobility and largely decreased threshold voltage compared with PCPOI-Tz. This work affords two structurally novel electron-deficient building blocks and highlights the effectiveness of dual functionalization of PhAs with strong electron-withdrawing groups for devising n-type polymers.

11.
Phys Rev Lett ; 132(9): 090401, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38489615

ABSTRACT

The quantum battery (QB) makes use of quantum effects to store and supply energy, which may outperform its classical counterpart. However, there are two challenges in this field. One is that the environment-induced decoherence causes the energy loss and aging of the QB, the other is that the decreasing of the charger-QB coupling strength with increasing their distance makes the charging of the QB become inefficient. Here, we propose a QB scheme to realize a remote charging via coupling the QB and the charger to a rectangular hollow metal waveguide. It is found that an ideal charging is realized as long as two bound states are formed in the energy spectrum of the total system consisting of the QB, the charger, and the electromagnetic environment in the waveguide. Using the constructive role of the decoherence, our QB is immune to the aging. Additionally, without resorting to the direct charger-QB interaction, our scheme works in a way of long-range and wireless-like charging. Effectively overcoming the two challenges, our result supplies an insightful guideline to the practical realization of the QB by reservoir engineering.

12.
BMC Anesthesiol ; 24(1): 101, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493108

ABSTRACT

BACKGROUND: Deep neuromuscular block (NMB) has been shown to improve surgical conditions and alleviate post-operative pain in bariatric surgery compared with moderate NMB. We hypothesized that deep NMB could also improve the quality of early recovery after laparoscopic sleeve gastrectomy (LSG). METHODS: Eighty patients were randomized to receive either deep (post-tetanic count 1-3) or moderate (train-of-four count 1-3) NMB. The QoR-15 questionnaire was used to evaluate the quality of early recovery at 1 day before surgery (T0), 24 and 48 h after surgery (T2, T3). Additionally, we recorded diaphragm excursion (DE), postoperative pain, surgical condition, cumulative dose of analgesics, time of first flatus and ambulation, post-operative nausea and vomiting, time of tracheal tube removal and hospitalization time. MAIN RESULTS: The quality of recovery was significantly better 24 h after surgery in patients who received a deep versus moderate block (114.4 ± 12.9 versus 102.1 ± 18.1). Diaphragm excursion was significantly greater in the deep NMB group when patients performed maximal inspiration at T2 and T3 (P < 0.05). Patients who underwent deep NMB reported lower visceral pain scores 40 min after surgery; additionally, these patients experienced lower pain during movement at T3 (P < 0.05). Optimal surgical conditions were rated in 87.5% and 64.6% of all measurements during deep and moderate NMB respectively (P < 0.001). The time to tracheal tube removal was significantly longer in the deep NMB group (P = 0.001). There were no differences in other outcomes. CONCLUSION: In obese patients receiving deep NMB during LSG, we observed improved QoR-15 scores, greater diaphragmatic excursions, improved surgical conditions, and visceral pain scores were lower. More evidence is needed to determine the effects of deep NMB on these outcomes. TRIAL REGISTRATION: ChiCTR2200065919. Date of retrospectively registered: 18/11/2022.


Subject(s)
Laparoscopy , Neuromuscular Blockade , Neuromuscular Diseases , Visceral Pain , Humans , Obesity , Pain, Postoperative/drug therapy , Gastrectomy
13.
Plants (Basel) ; 13(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38202447

ABSTRACT

Nitrogen is a fundamental component for building amino acids and proteins, playing a crucial role in the growth and development of plants. Leaf nitrogen concentration (LNC) serves as a key indicator for assessing plant growth and development. Monitoring LNC provides insights into the absorption and utilization of nitrogen from the soil, offering valuable information for rational nutrient management. This, in turn, contributes to optimizing nutrient supply, enhancing crop yields, and minimizing adverse environmental impacts. Efficient and non-destructive estimation of crop LNC is of paramount importance for on-field crop management. Spectral technology, with its advantages of repeatability and high-throughput observations, provides a feasible method for obtaining LNC data. This study explores the responsiveness of spectral parameters to soybean LNC at different vertical scales, aiming to refine nitrogen management in soybeans. This research collected hyperspectral reflectance data and LNC data from different leaf layers of soybeans. Three types of spectral parameters, nitrogen-sensitive empirical spectral indices, randomly combined dual-band spectral indices, and "three-edge" parameters, were calculated. Four optimal spectral index selection strategies were constructed based on the correlation coefficients between the spectral parameters and LNC for each leaf layer. These strategies included empirical spectral index combinations (Combination 1), randomly combined dual-band spectral index combinations (Combination 2), "three-edge" parameter combinations (Combination 3), and a mixed combination (Combination 4). Subsequently, these four combinations were used as input variables to build LNC estimation models for soybeans at different vertical scales using partial least squares regression (PLSR), random forest (RF), and a backpropagation neural network (BPNN). The results demonstrated that the correlation coefficients between the LNC and spectral parameters reached the highest values in the upper soybean leaves, with most parameters showing significant correlations with the LNC (p < 0.05). Notably, the reciprocal difference index (VI6) exhibited the highest correlation with the upper-layer LNC at 0.732, with a wavelength combination of 841 nm and 842 nm. In constructing the LNC estimation models for soybeans at different leaf layers, the accuracy of the models gradually improved with the increasing height of the soybean plants. The upper layer exhibited the best estimation performance, with a validation set coefficient of determination (R2) that was higher by 9.9% to 16.0% compared to other layers. RF demonstrated the highest accuracy in estimating the upper-layer LNC, with a validation set R2 higher by 6.2% to 8.8% compared to other models. The RMSE was lower by 2.1% to 7.0%, and the MRE was lower by 4.7% to 5.6% compared to other models. Among different input combinations, Combination 4 achieved the highest accuracy, with a validation set R2 higher by 2.3% to 13.7%. In conclusion, by employing Combination 4 as the input, the RF model achieved the optimal estimation results for the upper-layer LNC, with a validation set R2 of 0.856, RMSE of 0.551, and MRE of 10.405%. The findings of this study provide technical support for remote sensing monitoring of soybean LNCs at different spatial scales.

14.
Psychol Res Behav Manag ; 17: 79-99, 2024.
Article in English | MEDLINE | ID: mdl-38204567

ABSTRACT

Purpose: This study aimed to investigate the effects of three different safety stressors (safety role ambiguity, safety role conflicts, and safety interpersonal conflicts) on safety performance of coal miners under the mediating role of resilience and coping styles. Patients and Methods: The study is cross-sectional. To collect data to analyze the hypothesized relationships in the present study, a total of 450 questionnaires were distributed to coal miners in Shannxi Province of China. Regression analysis was employed as the main statistical technique in analyzing the data using SPSS 22.0 and Process 4.1. Results: The results of regression analysis indicate that the three kind of safety stressors have a negative predictive effect on coal miners' safety performance. Resilience and coping styles both were the mediating variables between the safety stressors (safety role ambiguity, safety role conflicts, and safety interpersonal conflicts) and coal miners' safety performance, and resilience and coping styles play a chain mediating role between the safety stressors (safety role ambiguity, safety role conflicts, and safety interpersonal conflicts) and safety performance of coal miners. Conclusion: This study further explores the mechanism between safety stressors and safety performance, providing theoretical guidance for improving the safety performance of coal mines. It emphasizes the importance of coal miner's resilience intervention, positive coping styles promotion, and negative coping styles prevention in coal mine safety production.

15.
Angew Chem Int Ed Engl ; 63(11): e202319658, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38265195

ABSTRACT

Developing low-cost and high-performance n-type polymer semiconductors is essential to accelerate the application of organic thermoelectrics (OTEs). To achieve this objective, it is critical to design strong electron-deficient building blocks with simple structure and easy synthesis, which are essential for the development of n-type polymer semiconductors. Herein, we synthesized two cyano-functionalized highly electron-deficient building blocks, namely 3,6-dibromopyrazine-2-carbonitrile (CNPz) and 3,6-Dibromopyrazine-2,5-dicarbonitrile (DCNPz), which feature simple structures and facile synthesis. CNPz and DCNPz can be obtained via only one-step reaction and three-step reactions from cheap raw materials, respectively. Based on CNPz and DCNPz, two acceptor-acceptor (A-A) polymers, P(DPP-CNPz) and P(DPP-DCNPz) are successfully developed, featuring deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels, which are beneficial to n-type organic thin-film transistors (OTFTs) and OTEs performance. An optimal unipolar electron mobility of 0.85 and 1.85 cm2 V-1 s-1 is obtained for P(DPP-CNPz) and P(DPP-DCNPz), respectively. When doped with N-DMBI, P(DPP-CNPz) and P(DPP-DCNPz) show high n-type electrical conductivities/power factors of 25.3 S cm-1 /41.4 µW m-1 K-2 , and 33.9 S cm-1 /30.4 µW m-1 K-2 , respectively. Hence, the cyano-functionalized pyrazine CNPz and DCNPz represent a new class of structurally simple, low-cost and readily accessible electron-deficient building block for constructing n-type polymer semiconductors.

16.
Adv Mater ; 36(4): e2305416, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37572077

ABSTRACT

Developing high-performance n-type polymer mixed ionic-electronic conductors (PMIECs) is a grand challenge, which largely determines their applications in vaious organic electronic devices, such as organic electrochemical transistors (OECTs) and organic thermoelectrics (OTEs). Herein, two halogen-functionalized PMIECs f-BTI2g-TVTF and f-BTI2g-TVTCl built from fused bithiophene imide dimer (f-BTI2) as the acceptor unit and halogenated thienylene-vinylene-thienylene (TVT) as the donor co-unit are reported. Compared to the control polymer f-BTI2g-TVT, the fluorinated f-BTI2g-TVTF shows lower-positioned lowest unoccupied molecular orbital (LUMO), improved charge transport property, and greater ion uptake capacity. Consequently, f-BTI2g-TVTF delivers a state-of-the-art µC* of 90.2 F cm-1 V-1 s-1 with a remarkable electron mobility of 0.41 cm2 V-1 s-1 in OECTs and an excellent power factor of 64.2 µW m-1 K-2 in OTEs. An OECT-based inverter amplifier is further demonstrated with voltage gain up to 148 V V-1 , which is among the highest values for OECT inverters. Such results shed light on the impacts of halogen atoms on developing high-performing n-type PMIECs.

17.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166917, 2024 02.
Article in English | MEDLINE | ID: mdl-37820821

ABSTRACT

The tumor microenvironment consists of cancer cells and various stromal cells, including macrophages, which exhibit diverse phenotypes with either pro-inflammatory (M1) or anti-inflammatory (M2) effects. The interaction between cancer cells and macrophages plays a crucial role in tumor progression. Small extracellular vesicles (sEVs), which facilitate intercellular communication, are known to play a vital role in this process. This review provides a comprehensive summary of how sEVs derived from cancer cells, containing miRNAs, lncRNAs, proteins, and lipids, can influence macrophage polarization. Additionally, we discuss the impact of macrophage-secreted sEVs on tumor malignant transformation, including effects on proliferation, metastasis, angiogenesis, chemoresistance, and immune escape. Furthermore, we address the therapeutic advancements and current challenges associated with macrophage-associated sEVs, along with potential solutions.


Subject(s)
Extracellular Vesicles , Tumor-Associated Macrophages , Immunotherapy , Macrophages , Cell Communication
18.
Faraday Discuss ; 250(0): 335-347, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-37965681

ABSTRACT

The scarcity of n-type polymers with high electrical conductivity (σ) and power factor (PF) is the major challenge for organic thermoelectrics (OTEs). By integrating cyano functionalities and an intramolecular conformation lock, we herein synthesize a new electron-deficient building block, CNg4T2, bearing long 1,4,7,10-tetraoxahendecyl side chains, and then further develop two n-type polythiophene derivatives, CNg4T2-2FT and CNg4T2-CNT2, with 3,4-difluorothiophene and 3,3'-dicyano-2,2'-bithiophene as co-units, respectively. Compared with CNg4T2-2FT, CNg4T2-CNT2 features a deeper-positioned lowest unoccupied molecular orbital (LUMO) while maintaining a high degree of backbone coplanarity. As a consequence, the CNg4T2-CNT2 film with molecular dopant N-DMBI delivered an impressive σ of 13.2 S cm-1 and a high PF of up to 10.84 µW m-1 K-2, significantly outperforming CNg4T2-2FT and benchmark n-type polymer N2200 films. To the best of our knowledge, this PF of CNg4T2-CNT2 devices is the highest value for n-type polythiophenes in OTEs. Further characterizations indicate that the high performance of CNg4T2-CNT2-based devices is attributed to the high doping efficiency and ordered packing of polymer chains. Our study demonstrates that CNg4T2 is a highly appealing electron-deficient building block for n-type OTE polymers and also suggests that fine-tuning of the polymer backbone is a powerful approach to accessing high-performance n-type polymers for OTE devices.

19.
Adv Mater ; 36(13): e2308380, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38134206

ABSTRACT

Protonation of oxide cathodes triggers surface transition metal dissolution and accelerates the performance degradation of Li-ion batteries. While strategies are developed to improve cathode material surface stability, little is known about the effects of protonation on bulk phase transitions in these cathode materials or their sodium-ion battery counterparts. Here, using NaNiO2 in electrolytes with different proton-generating levels as model systems, a holistic picture of the effect of incorporated protons is presented. Protonation of lattice oxygens stimulate transition metal migration to the alkaline layer and accelerates layered-rock-salt phase transition, which leads to bulk structure disintegration and anisotropic surface reconstruction layers formation. A cathode that undergoes severe protonation reactions attains a porous architecture corresponding to its multifold performance fade. This work reveals that interactions between electrolyte and cathode that result in protonation can dominate the structural reversibility/stability of bulk cathodes, and the insight sheds light for the development of future batteries.

20.
Chem Asian J ; 19(3): e202301009, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38116900

ABSTRACT

Exploration of new electron-withdrawing building blocks plays a key role in the development of n-type organic semiconductors. Herein, a strong electron-withdrawing building block, dipyridyl-fused quinoxalineimide (DPQI), was successfully designed and synthesized. Single-crystal structure reveals that DPQI molecule possesses a completely planar backbone, which is beneficial for charge transport. For comparison, dibenzo-fused quinoxalineimide (DBQI) was also synthesized. The frontier molecular orbital (FMO) energy levels downshift with the incorporation of nitrogen atoms onto the π-conjugated backbone of quinoxalineimide. Two acceptor-acceptor (or all-acceptor) polymers P(BTI-DBQI) and P(BTI-DPQI) based on DBQI and DPQI were synthesized, respectively. Two polymers exhibit deep lowest-unoccupied molecular orbital (LUMO) levels (~-3.5 eV). Additionally, P(BTI-DPQI) exhibits unipolar n-type charge transport with µe of 1.4×10-4  cm2  V-1 s-1 in the organic field-effect transistors (OFET), which render them highly attractive for developing n-type semiconductors device. This work demonstrates that DPQI is a promising building block for constructing n-type polymer semiconductors.

SELECTION OF CITATIONS
SEARCH DETAIL
...