Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 444: 138508, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38340502

ABSTRACT

The effects of different l-Cysteine additions (0-2 %) on the gel properties, microstructure and physicochemical stability of sheep plasma protein gels were studied. The introduction of l-Cys significantly improved the water retention capacity and whiteness of the plasma protein gel (p < 0.05). The addition of 0.2 %-0.4 % l-Cys increased gel strength, but l-Cys had no significant effect on gel elasticity (p < 0.05). Scanning electron microscopy confirmed that the addition of l-Cys also promoted the formation of a porous three-dimensional network structure in the gel. Raman spectroscopy and SDS-PAGE revealed that the addition of l-Cys generally reduced α-helix structures in protein gels and promoted the formation of ß-folds. Addition of 0.2 % l-Cys treatment leading to the greatest increase in disulfide bonds, and its surface hydrophobicity and endogenous fluorescence intensity were the largest. At this time, the comprehensive performance of sheep plasma protein gel is the best performance.


Subject(s)
Cysteine , Hot Temperature , Animals , Sheep , Cysteine/chemistry , Gels/chemistry , Blood Proteins , Protein Conformation, alpha-Helical , Water/chemistry
2.
Small ; 19(22): e2208062, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36871145

ABSTRACT

This work reports for the first time a highly efficient single-crystal cesium tin triiodide (CsSnI3 ) perovskite nanowire solar cell. With a perfect lattice structure, low carrier trap density (≈5 × 1010 cm-3 ), long carrier lifetime (46.7 ns), and excellent carrier mobility (>600 cm2 V-1 s-1 ), single-crystal CsSnI3 perovskite nanowires enable a very attractive feature for flexible perovskite photovoltaics to power active micro-scale electronic devices. Using CsSnI3 single-crystal nanowire in conjunction with highly conductive wide bandgap semiconductors as front-surface-field layers, an unprecedented efficiency of 11.7% under AM 1.5G illumination is achieved. This work demonstrates the feasibility of all-inorganic tin-based perovskite solar cells via crystallinity and device-structure improvement for the high-performance, and thus paves the way for the energy supply to flexible wearable devices in the future.

3.
ChemSusChem ; 16(3): e202202061, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36469039

ABSTRACT

Fully inorganic perovskite cesium lead triiodide (CsPbI3 ) has garnered much attention from researcher for photovoltaic application because of its excellent thermal stability compared with the inorganic-organic hybrid counterparts, along with the potential to serve as the top cell in tandem devices with silicon solar cell. However, the active α-phase cubic CsPbI3 spontaneously tends to transform into the non-perovskite δ-CsPbI3 when subjected to ambient condition. This work proposes an effective method to fabricate high-quality and stable α-phase cubic CsPbI3 films by introducing phosphorus pentachloride (PCl5 ) as an additive. PCl5 acts as colloidal binder for modulating crystallization dynamics of perovskites, resulting in high-quality film and a significantly suppressed phase transition. Finally, highly stable CsPbI3 perovskite solar cells can be achieved with a power conversion efficiency up to 17.85 %, and a long-term stability in N2 filled glove box.

4.
Water Res ; 225: 119167, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36183545

ABSTRACT

The efficient and harmless treatment of hypersaline organic wastes has become an urgent environmental problem. Compared to traditional thermochemical methods, supercritical water oxidation has been proven to be an efficient organic waste treatment technology due to the advantages of low cost, high degradation rate, no secondary pollutants, etc. However, the solubilities of inorganic salts drop rapidly near the critical point of water, and some sticky salts form easily agglomerates and then adhere to internal surfaces of reactor and pipeline, causing plugging and inhibition of heat transfer. Hence, the characteristics, mechanisms and measurement methods of the dissolution and deposition of inorganic salts in sub-/supercritical water are summarized and analyzed systematically and comprehensively in this work, intending to provide a valuable guide for salt deposition prevention and subsequent research directions. Firstly, a new classification form of inorganic salt is put forward based on melting point. The phase equilibriums of brine systems are then analyzed in detail. Six theories concerning dissolution mechanisms are discussed deeply and various measurement methods of salt solubility are also supplemented. Furthermore, salt deposition characteristics and related measurement technologies are summarized. Notably, a new idea "hydrothermal molten salt" system is reviewed which may provide a solution for salt deposition in sub/supercritical water. Finally, an outlook for the follow-up researches is prospected and some suggestions are proposed.

5.
Sci Rep ; 6: 29519, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27389642

ABSTRACT

In the last few decades, optical frequency combs with high intensity, broad optical bandwidth, and directly traceable discrete wavelengths have triggered rapid developments in distance metrology. However, optical frequency combs to date have been limited to determine the absolute distance to an object (such as satellite missions). We propose a scheme for the detection of topological defect dark matter using a coherent laser ranging system composed of dual-combs and an optical clock via nongravitational signatures. The dark matter field, which comprises a defect, may interact with standard model particles, including quarks and photons, resulting in the alteration of their masses. Thus, a topological defect may function as a dielectric material with a distinctive frequency-depend index of refraction, which would cause the time delay of a periodic extraterrestrial or terrestrial light. When a topological defect passes through the Earth, the optical path of long-distance vacuum path is altered, this change in optical path can be detected through the coherent laser ranging system. Compared to continuous wavelength(cw) laser interferometry methods, dual-comb interferometry in our scheme excludes systematic misjudgement by measuring the absolute optical path length.

6.
Sci Rep ; 5: 11469, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26159113

ABSTRACT

Many cosmological observations point towards the existence of dark-matter(DM) particles and consider them as the main component of the matter content of the universe. The goal of revealing the nature of dark-matter has triggered the development of new, extremely sensitive detectors. It has been demonstrated that the frequencies and phases of optical clock have a transient shift during the DMs' arrival due to the DM-SM(Standard Model) coupling. A simple, reliable and feasible experimental scheme is firstly proposed in this paper, based on "frequency-delay system" to search dark-matter by "self-frequency comparison" of an optical clock. During the arrival of a dark-matter, frequency discrepancy is expected between two signals with a short time difference(~ms) of the same optical clock to exhibit the interaction between atoms and dark-matter. Furthermore, this process can determine the exact position of dark-matter when it is crossing the optical clocks, therefore a network of detecting stations located in different places is recommended to reduce the misjudgment risk to an acceptable level.

SELECTION OF CITATIONS
SEARCH DETAIL
...