Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Environ Pollut ; 355: 124148, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38735457

ABSTRACT

Identifying the key influencing factors in soil available cadmium (Cd) is crucial for preventing the Cd accumulation in the food chain. However, current experimental methods and traditional prediction models for assessing available Cd are time-consuming and ineffective. In this study, machine learning (ML) models were developed to investigate the intricate interactions among soil properties, climate features, and available Cd, aiming to identify the key influencing factors. The optimal model was obtained through a combination of stratified sampling, Bayesian optimization, and 10-fold cross-validation. It was further explained through the utilization of permutation feature importance, 2D partial dependence plot, and 3D interaction plot. The findings revealed that pH, surface pressure, sensible heat net flux and organic matter content significantly influenced the Cd accumulation in the soil. By utilizing historical soil surveys and climate change data from China, this study predicted the spatial distribution trend of available Cd in the Chinese region, highlighting the primary areas with heightened Cd activity. These areas were primarily located in the eastern, southern, central, and northeastern China. This study introduces a novel methodology for comprehending the process of available Cd accumulation in soil. Furthermore, it provides recommendations and directions for the remediation and control of soil Cd pollution.


Subject(s)
Cadmium , Environmental Monitoring , Machine Learning , Soil Pollutants , Soil , Cadmium/analysis , Soil Pollutants/analysis , Soil/chemistry , China , Environmental Monitoring/methods , Climate , Bayes Theorem , Climate Change
2.
J Hazard Mater ; 471: 134413, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38669935

ABSTRACT

Heavy metal pollution at an abandoned smelter pose a significant risk to environmental health. However, remediation strategies are constrained by inadequate knowledge of the polymetallic distribution, speciation patterns, and transformation factors at these sites. This study investigates the influence of soil minerals, heavy metal occurrence forms, and environmental factors on heavy metal migration behaviors and speciation transformations. X-ray diffraction analysis revealed that the minerals associated with heavy metals are mainly hematite, franklinite, sphalerite, and galena. Sequential extraction results suggest that lead and zinc are primarily present in the organic-sulfide fractions (F4) and residual form (F5) in the soil, accounting for over 70% of the total heavy metal content. Zinc displayed greater instability in carbonate-bound (16%) and exchangeable (2%) forms. The migration and diffusion patterns of heavy metals in the subsurface environment were visualized through the simulation of labile state heavy metals, demonstrating high congruence with groundwater pollution distribution patterns. The key environmental factors influencing heavy metal stable states (F4 and F5) were assessed by integrating random forest models and redundancy analysis. Primary factors facilitating Pb transformation into stable states were available phosphorus, clay content, depth, and soil organic matter. For Zn, the principal drivers were Mn oxides, soil organic matter, clay content, and inorganic sulfur ions. These findings enhance understanding of the distribution and transformation of heavy metal speciation and can provide valuable insights into controlling heavy metal pollution at non-ferrous smelting sites.

3.
J Hazard Mater ; 471: 134408, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678716

ABSTRACT

The occurrence and migration of colloids at smelting sites are crucial for the formation of multi-metal(loid)s pollution in groundwater. In this study, the behavior of natural colloids (1 nm-0.45 µm) at an abandoned smelting site was investigated by analyzing groundwater samples filtered through progressively decreasing pore sizes. Smelting activities in this site had negatively impacted the groundwater quality, leading to elevated concentrations of zinc (Zn), lead (Pb), arsenic (As), and cadmium (Cd). The results showed that heavy metal(loid)-bearing colloids were ubiquitous in the groundwater with the larger colloidal fractions (∼75 -450 nm) containing higher abundances of pollutants. It was also observed that the predominant colloids consisted of Zn-Al layered double hydroxide (LDH), sphalerite, kaolinite, and hematite. By employing multiple analytical techniques, including leaching experiments, soil colloid characterization, and Pb stable isotope measurements, the origin of groundwater colloids was successfully traced to the topsoil colloids. Most notably, our findings highlighted the increased risk of heavy metal(loid)s migration from polluted soils into adjacent sites through the groundwater because of colloid-mediated transport of contaminants. This field-scale investigation provides valuable insights into the geochemical processes governing heavy metal(loid) behavior as well as offering pollution remediation strategies specifically tailored for contaminated groundwater.

4.
Environ Geochem Health ; 46(3): 86, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38367055

ABSTRACT

Biochar adsorption of heavy metals has been a research hotspot, yet there has been limited reports on the effect of heavy metal interactions on adsorption efficiency in complex systems. In this study, the adsorbent was prepared by pyrolysis of rice straw loaded with manganese (BC-Mn). The interactions of Pb, Cd and As adsorption on BC-Mn were systematically studied. The results of the adsorption isotherms for the binary metal system revealed a competitive adsorption between Pb and Cd, resulting in decreased Pb (from 214.38 mg/g to 148.20 mg/g) and Cd (from 165.73 mg/g to 92.11 mg/g). A notable promotion occurred between As and Cd, showing an increase from 234.93 mg/g to 305.00 mg/g for As and 165.73 mg/g to 313.94 mg/g for Cd. In the ternary metal system, Pb inhibition did not counteract the promotion of Cd and As. Furthermore, the Langmuir isotherm effectively described BC-Mn's adsorption process in monometallic, binary, and ternary metal systems (R2 > 0.9294). Zeta and FTIR analyses revealed simultaneous competition between Pb and Cd for adsorption on BC-Mn's -OH sites. XPS analysis revealed that As adsorption by BC-Mn facilitated the conversion of MnO2 and MnO to MnOOH, resulting in increased hydroxyl radical production on BC-Mn's surface. Simultaneously, Cd combined with the adsorbed As to form ternary Cd-As-Mn complexes, which expedited the removal of Cd. These results help to provide theoretical support as well as technical support for the treatment of Pb-Cd-As contaminated wastewater.


Subject(s)
Arsenic , Metals, Heavy , Water Pollutants, Chemical , Cadmium , Manganese , Manganese Compounds , Adsorption , Lead , Oxides , Charcoal
5.
BMC Public Health ; 24(1): 373, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38317119

ABSTRACT

BACKGROUND: Endometriosis (EMs) is a chronic and progressive disease that, if diagnosed late, can lead to infertility and deep infiltrating endometriosis (DIE). Dysmenorrhea is the most prominent symptom of EMs. However, limited research exists on the specific correlation between dysmenorrhea patterns and EMs. Early prevention of EMs is essential to effectively manage the progression of the disease, and is best detected during adolescence. Our objective was to associate the development of EMs with dysmenorrhea patterns during adolescence and quantify the risk of adult EMs for adolescent girls, with the aim of supporting primary intervention strategy planning. METHODS: This case-control study examined predictors for adult EMs based on dysmenorrhea patterns in adolescents. We collected 1,287 cases of 641 EMs and 646 healthy females regarding their basic demographic information, adolescent menstrual characteristics, adolescent dysmenorrheal patterns, and adolescent lifestyles. Age-matching (1-to-1) was employed to control for the confounding effect of age between the groups. Least Absolute Shrinkage and Selection Operator (LASSO) and logistic regression models were utilized to identify predictors for adult EMs. The predictive value of the model was evaluated using the area under the receiver operating characteristic curve (AUC) and the C-index, while Hosmer-Lemeshow Test assessed the goodness of fit of the model. Data from one additional cohort in Shenzhen hospitalized with EMs were used to external validation were analyzed. RESULTS: Individuals who always experienced dysmenorrhea had a risk of adult endometriosis 18.874 (OR = 18.874; 95%CI = 10.309-34.555) times higher than those occasional dysmenorrhea, The risk of developing EMs was 5.257 times higher in those who experienced dysmenorrhea more than 12 months after menarche than in those who experienced dysmenorrhea less than 6 months after menarche (OR = 5.257, 95% CI = 3.343-8.266), AUC in the external validation cohort was 0.794(95%CI: 0.741-0.847). We further found that high-intensity physical activity and sun-sensitive skin of burning were influential factors in high-frequency dysmenorrhea. The AUC value for the internal evaluation of the model was 0.812 and the AUC value for the external validation was 0.794. CONCLUSION: Our findings revealed that the frequency of dysmenorrhea during adolescence contributed to the development of adult endometriosis. The frequency and onset of dysmenorrhea in adolescence were promising predictors for adult EMs. Both internal and external validation proved the model's good predictive ability. TRIAL REGISTRATION: http://www.chictr.org.cn/ , TRN: ChicTR2200060429, date of registration: 2022/06/01, retrospectively registered.


Subject(s)
Endometriosis , Adult , Female , Adolescent , Humans , Endometriosis/complications , Endometriosis/epidemiology , Endometriosis/diagnosis , Dysmenorrhea/epidemiology , Dysmenorrhea/etiology , Dysmenorrhea/diagnosis , Case-Control Studies , Menstruation , Menarche
6.
ACS Appl Mater Interfaces ; 16(10): 12534-12543, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38410050

ABSTRACT

The low O2 activation ability at low temperatures and SO2 poisoning are challenges for metal oxide catalysts in the application of Hg0 removal in flue gas. A novel high-entropy fluorite oxide (MgAlMnCo)CeO2 (Co-HEO) with the second phase of spinel is synthesized by the microwave hydrothermal method for the first time. A high efficiency of Hg0 removal (close to 100%) is achieved by Co-HEO catalytic oxidation at temperatures as low as 100 °C and in the atmosphere of 145 µg m-3 Hg0 at a high GHSV (gas hourly space velocity) of 95,000 h-1. According to O2-TPD and in situ FT-IR, this extremely superior catalytic oxidation performance at low temperatures originates from the activation ability of Co-HEO to transform O2 into superoxide and peroxide, which is promoted by point defects induced from the spinel/fluorite heterointerfaces. Meanwhile, SO2 resistance of Co-HEO for Hg0 removal is also improved up to 2000 ppm due to the high-entropy-stabilized structure, construction of heterointerfaces, and synergistic effect of the multicomponents for inhibiting the oxidation of SO2 to surface sulfate. The design strategy of the dual-phase high-entropy material launches a new route for metal oxides in the application of catalytic oxidation and SO2 resistance.

7.
Sci Total Environ ; 920: 170951, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38367722

ABSTRACT

Rapid urbanization and industrialization have significantly contributed to the contamination of the environment through the discharge of wastewater containing various pollutants. The development of high-performance surface functional nanostructured adsorbents is of wide interest for researchers. Therefore, we explore the significant advancements in this field, focusing on the efficiency of nanostructured materials, as well as their nanocomposites, for wastewater treatment applications. The crucial role of surface modification in enhancing the affinity of these nanostructured adsorbents towards targeted pollutants, addressing a key bottleneck in the utilization of nanomaterials for wastewater treatment, was specifically emphasized. In addition to highlighting the advantages of surface engineering in enhancing the efficiency of nanostructured adsorbents, this review also provides a comprehensive overview of the limitations and challenges associated with surface-modified nanostructured adsorbents, including high cost, low stability, poor scalability, and potential nanotoxicity. Addressing these limitations is essential for realizing the commercial viability of these state-of-the-art materials for large-scale wastewater treatment applications. This review also thoroughly discusses the potential scalability and environmental safety aspects of surface-modified nanostructured adsorbents, offering insights into their future prospects for wastewater treatment. It is believed that this review will contribute significantly to the existing body of knowledge in the field and provide valuable information for researchers and practitioners working in the area of environmental remediation and nanomaterials.

8.
J Environ Sci (China) ; 139: 23-33, 2024 May.
Article in English | MEDLINE | ID: mdl-38105051

ABSTRACT

Lignin is a common soil organic matter that is present in soils, but its effect on the transformation of ferrihydrite (Fh) remains unclear. Organic matter is generally assumed to inhibit Fh transformation. However, lignin can reduce Fh to Fe(II), in which Fe(II)-catalyzed Fh transformation occurs. Herein, the effects of lignin on Fh transformation were investigated at 75°C as a function of the lignin/Fh mass ratio (0-0.2), pH (4-8) and aging time (0-96 hr). The results of Fh-lignin samples (mass ratios = 0.1) aged at different pH values showed that for Fh-lignin the time of Fh transformation into secondary crystalline minerals was significantly shortened at pH 6 when compared with pure Fh, and the Fe(II)-accelerated transformation of Fh was strongly dependent on pH. Under pH 6, at low lignin/Fh mass ratios (0.05-0.1), the time of secondary mineral formation decreased with increasing lignin content. For high lignosulfonate-content material (lignin:Fh = 0.2), Fh did not transform into secondary minerals, indicating that lignin content plays a major role in Fh transformation. In addition, lignin affected the pathway of Fh transformation by inhibiting goethite formation and facilitating hematite formation. The effect of coprecipitation of lignin on Fh transformation should be useful in understanding the complex iron and carbon cycles in a soil environment.


Subject(s)
Ferric Compounds , Lignin , Oxidation-Reduction , Ferric Compounds/chemistry , Minerals/chemistry , Soil , Ferrous Compounds
9.
J Environ Sci (China) ; 139: 496-515, 2024 May.
Article in English | MEDLINE | ID: mdl-38105072

ABSTRACT

Birnessite is ubiquitous in the natural environment where heavy metals are retained and easily transformed. The surface properties and structure of birnessite change with the changes in external environmental conditions, which also affects the fate of heavy metals. Clarifying the effect and mechanism of the birnessite phase transition process on heavy metals is the key to taking effective measures to prevent and control heavy metal pollution. Therefore, the four transformation pathways of birnessite are summarized first in this review. Second, the relationship between transformation pathways and environmental conditions is proposed. These relevant environmental conditions include abiotic (e.g., co-existing ions, pH, oxygen pressure, temperature, electric field, light, aging, pressure) and biotic factors (e.g., microorganisms, biomolecules). The phase transformation is achieved by the key intermediate of Mn(III) through interlayer-condensation, folding, neutralization-disproportionation, and dissolution-recrystallization mechanisms. The AOS (average oxidation state) of Mn and interlayer spacing are closely correlated with the phase transformation of birnessite. Last but not least, the mechanisms of heavy metals immobilization in the transformation process of birnessite are summed up. They involve isomorphous substitution, redox, complexation, hydration/dehydration, etc. The transformation of birnessite and its implication on heavy metals will be helpful for understanding and predicting the behavior of heavy metals and the crucial phase of manganese oxides/hydroxides in natural and engineered environments.


Subject(s)
Manganese , Metals, Heavy , Manganese/chemistry , Adsorption , Metals, Heavy/chemistry , Oxides/chemistry , Manganese Compounds/chemistry , Oxidation-Reduction
10.
Chemosphere ; 342: 140183, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37726061

ABSTRACT

In this study, a novel slightly-soluble selenium (Se) fertilizer (SSF) was successfully applied to address the problems of Cd pollution in paddy soil and rice, and Se deficiency in human beings. The pot and field experiments showed that Cd content in the rice grains was reduced by 48.4%-82.89% and Se content was increased nearly by 30-fold comparing the control group. The application of SSF increased the soil pH and significantly reduced the DGT-extracted Cd in the soil. Moreover, DCB-extractable Fe content on the surface of roots was prompt by SSF, which formed a physical barrier, namely iron plaque (IP), to inhibit Cd translocation to the above-ground tissues of the rice plants. The Cd content in the IP was also decreased before the filling period, possibly contributing to the reduction in major Cd accumulation in the rice grains. In addition, the continuous Se increase and Cd reduction in the IP by the SSF gradually exceeded that of water-soluble Se during the three periods of rice plant growth. This suggests that SSF has high potential to be an effective Se fertilizer for inhibiting Cd uptake and enriching Se in rice.


Subject(s)
Oryza , Selenium , Soil Pollutants , Humans , Selenium/pharmacology , Selenium/chemistry , Oryza/chemistry , Cadmium/analysis , Fertilizers/analysis , Soil/chemistry , Soil Pollutants/analysis
11.
Chemosphere ; 344: 140310, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37775058

ABSTRACT

The increase of metal mining, processing, and smelting activities has precipitated a substantial escalation in the contamination of soil by heavy metals. Ferrihydrite (FH) has been commonly used as an amendment for the immobilization of heavy metals in contaminated soil. However, FH suffers from drawbacks such as agglomeration and nonmigratory characteristics, which limit its practical application in soil remediation. Herein, a novel spent grain-modified ferrihydrite (FH-SG) colloidal system was developed, and the FH-SG transport mechanisms in the soil medium were fully studied, focusing in particular on the simultaneous in situ stabilization of arsenic (As), lead (Pb), and cadmium (Cd) in co-contaminated soil. The results showed that the stabilization rates of the FH-SG material reached 94.66%, 96.12%, and 95.52% for water-soluble As, Pb, and Cd, respectively, and 72.22%, 49.39%, and 25.30% for bioavailable As, Pb, and Cd, respectively. The FH-SG material demonstrates notable migration properties in porous media. Theoretical calculation results of a single collector show that the migration deposition of FH-SG material in media is primarily governed by its inherent diffusion characteristics with minimal influence by gravitational forces and media interception. It is noteworthy that the maximum migration distance in quartz sand and soil media with different particle sizes can reach 2.07-2.92 m and 0.78-1.08 m, respectively. Altogether, our findings clearly demonstrate that FH-SG exhibits better stabilization and migration than those of FH alone and most proposed FH colloidal systems. The FH-SG colloidal system holds significant promise for the remediation of various kinds of complex polluted soil.


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Cadmium/analysis , Arsenic/analysis , Lead , Soil Pollutants/analysis , Metals, Heavy/analysis , Soil , Edible Grain/chemistry
12.
Chemosphere ; 343: 140282, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37758089

ABSTRACT

A promising strategy for safely remediating Cd-contaminated farmland has been the application of mineral elements, which can reduce Cd accumulation in rice and inhibit its bioavailability in Cd-contaminated farmlands. However, there is still a lack of systematic and quantitative evaluations regarding how different mineral elements affect rice Cd accumulation and soil Cd bioavailability. Here, a meta-analysis was conducted based on 1062 individual observations from 137 published works to explore the effects of Si, P, Zn, Ca, Mn, Se, Fe and S in rice Cd accumulation and soil Cd bioavailability, we aimed to identify key factors that control the reduction of Cd concentration in rice grains. The results showed that the presence of exogenous elements had dramatically reduced rice grains Cd concentrations in the following decreasing order: Fe (43.03%) > P (38.45%) > Si (33.24%) > Ca (31.90%) > Se (29.83%) > Zn (25.95%) > Mn (23.26%) > S (18.78%). The elements of Ca, P and Si had strongly reduced Cd bioavailability in soils by 29.87%, 27.80% and 22.70%, respectively. The effects of these elements on Cd bioavailability appeared to be controlled by soil physio-chemical properties, such as pH, soil organic carbon (SOC) but also water management, application amounts and elemental forms. Overall, this study provides valuable insights into the potential of using exogenous mineral elements to mitigate Cd contamination in rice and farmlands, and facilitates the selection and application of mineral elements for the safe utilization of Cd-contaminated farmlands, taking into account soil properties and other factors that affect their effect.

13.
Materials (Basel) ; 16(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37176207

ABSTRACT

Degradation efficiency and catalyst stability are crucial issues in the control of organic compounds in wastewater by advanced oxidation processes (AOPs). However, it is difficult for catalysts used in AOPs to have both high catalytic activity and high stability. Combined with the excellent activity of cobalt/copper oxides and the good stability of carbon, highly dispersed cobalt-oxide and copper-oxide nanoparticles embedded in carbon-matrix composites (Co-Cu@C) were prepared for the catalytic activation of peroxymonosulfate (PMS). The catalysts exhibited a stable structure and excellent performance for complete phenol degradation (20 mg L-1) within 5 min in the Cu-Co@C-5/PMS system, as well as low metal-ion-leaching rates and great reusability. Moreover, a quenching test and an EPR analysis revealed that ·OH, O2·-, and 1O2 were generated in the Co-Cu@C/PMS system for phenol degradation. The possible mechanism for the radical and non-radical pathways in the activation of the PMS by the Co-Cu@C was proposed. The present study provides a new strategy with which to construct heterostructures for environmentally friendly and efficient PMS-activation catalysts.

14.
Sci Total Environ ; 874: 162578, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36870261

ABSTRACT

It is a big challenge to bioremediate thiocyanate pollution in the gold extraction heap leaching tailings and surrounding soils with high contents of arsenic and alkali. Here, a novel thiocyanate-degrading bacterium Pseudomonas putida TDB-1 was successfully applied to completely degrade 1000 mg/L thiocyanate under a high arsenic (400 mg/L) and alkaline condition (pH = 10). It also leached the contents of thiocyanate from 1302.16 to 269.72 mg/kg in the gold extraction heap leaching tailings after 50 h. The maximum transformation rates of S and N in thiocyanate to the two finial products of SO42- and NO3- were 88.98 % and 92.71 %, respectively. Moreover, the genome sequencing confirmed that the biomarker gene of thiocyanate-degrading bacterium, CynS was identified in the strain TDB-1. The bacterial transcriptome revealed that critical genes, such as CynS, CcoNOQP, SoxY, tst, gltBD, arsRBCH and NhaC, etc. in the thiocyanate degradation, S and N metabolisms, and As and alkali resistance were significantly up-regulated in the groups with 300 mg/L SCN- (T300) and with 300 mg/L SCN- and 200 mg/L As (TA300). In addition, the protein-protein interaction network showed that the glutamate synthase encoding by gltB and gltD served as central node to integrate the S and N metabolism pathways with thiocyanate as substrate. The results of our study provide a novel molecular level insight for the dynamic gene expression regulation of thiocyanate degradation by the strain TDB-1 with a severe arsenic and alkaline stress.


Subject(s)
Arsenic , Pseudomonas putida , Pseudomonas putida/metabolism , Thiocyanates/metabolism , Gold
15.
J Hazard Mater ; 452: 131232, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36940528

ABSTRACT

The different chemical behavior of anionic As and cationic Cd and Pb makes the simultaneous stabilization of soils contaminated with arsenic (As), cadmium (Cd), and lead (Pb) challenging. The use of soluble, insoluble phosphate materials and iron compounds cannot simultaneously stabilize As, Cd, and Pb in soil effectively due to the easy re-activation of heavy metals and poor migration. Herein, we propose a new strategy of "cooperatively stabilizing Cd, Pb, and As with slow-release ferrous and phosphate". To very this theory, we developed ferrous and phosphate slow-release materials to simultaneously stabilize As, Cd, and Pb in soil. The stabilization efficiency of water-soluble As, Cd and Pb reached 99% within 7d, and the stabilization efficiencies of NaHCO3-extractable As, DTPA-extractable Cd and Pb reached 92.60%, 57.79% and 62.81%, respectively. The chemical speciation analysis revealed that soil As, Cd and Pb were transformed into more stable states with the reaction time. The proportion of residual fraction of As, Cd, and Pb increased from 58.01% to 93.82%, 25.69 to 47.86%, 5.58 to 48.54% after 56 d, respectively. Using ferrihydrite as a representative soil component, the beneficial interactions of phosphate and slow-release ferrous material in stabilizing Pb, Cd, and As were demonstrated. The slow-release ferrous and phosphate material reacted with As and Cd/Pb to form stable ferrous arsenic and Cd/Pb phosphate. Furthermore, the slow-release phosphate converted the adsorbed As into dissolved As, then the dissolved As reacted with released ferrous to form a more stable form. Concurrently, As, Cd and Pb were structurally incorporated into the crystalline iron oxides during the ferrous ions-catalyzed transformation of amorphous iron (hydrogen) oxides. The results demonstrates that the use of slow-release ferrous and phosphate materials can aid in the simultaneous stabilization of As, Cd, and Pb in soil.

16.
Chemosphere ; 321: 138132, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36780997

ABSTRACT

Effective remediation of Cr(VI)-contaminated soil with strong alkalinity and high Cr(VI) concentration is a severe challenge. Herein, a proton-buffering montmorillonite-supported sulfidated nano zerovalent iron (nFeS/Fe0@H-Mt) was developed for remediation of alkaline Cr(VI)-contaminated soil. The reductive efficiencies of water-soluble Cr(VI) reached 99.7%, 99.3% and 99.8% in three tested soils with initial concentrations of 439.6, 3307.5 and 4626.7 mg kg-1, respectively, after 15 d of nFeS/Fe0@H-Mt treatment. Further speciation analyses demonstrated most available Cr species (exchangeable and carbonate-bound Cr) were transformed into more stable Cr species. The leachable Cr(VI) and total Cr obtained by toxicity leaching procedures decreased to extremely low levels and maintained long-term stability for 120 d. Such superior reductive immobilization performance of FeS/Fe0@H-Mt was attributed to the synergistic effect of sulfidated nano zerovalent iron and proton-buffering montmorillonite, which induced the coordination of proton donation and electron transfer. The proton-buffering montmorillonite (H-Mt) could prevent the aggregation of nanoparticles and provide protons to accelerate the corrosion of Fe0. In addition, the FeS component improved electron selectivity and facilitated electron transfer of Fe0 to Cr(VI). Our study demonstrated that the coordination of proton donation and electron transfer significantly enhanced the Cr(VI) reduction under the alkaline condition thus leading to effective remediation of alkaline Cr(VI)-contaminated soil.


Subject(s)
Iron , Soil Pollutants , Iron/analysis , Protons , Bentonite , Soil Pollutants/analysis , Chromium/analysis , Soil
17.
Sci Total Environ ; 867: 161369, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36626993

ABSTRACT

Anionic arsenic (As) exhibits geochemical behavior opposite to those of cationic cadmium (Cd), and lead (Pb), which makes the synchronous remediation of As, Cd, and Pb challenging. The synchronous stabilization of As, Cd, and Pb to form Cd/Pb-phosphate and iron­arsenic precipitates is a promising strategy. However, the effectiveness of soluble phosphate or iron-based materials is limited by the activation of Cd, Pb, or As, while low mobility hinders insoluble particles. In this study, we developed an amorphous structure that releases iron and phosphate at a sustained rate. Thus, the stabilization efficiencies of NaHCO3-extractable As, DTPA-extractable Cd and Pb reached 44.6 %, 40.8 %, and 48.1 %, respectively. The proportion of residual fraction of As, Cd, and Pb increased by 12.1 %, 14.5 %, and 36.4 %, respectively, after 28 d. Ferrihydrite was chosen as the soil component to monitor the chemical behavior and speciation transformation of As, Cd, and Pb in the reaction. During the process, the released iron directly reacted with dissolved As to form iron­arsenic precipitation and phosphate directly reacted with Cd/Pb to form Cd/Pb-phosphate precipitation. Simultaneously, phosphate replaced the adsorbed As and transformed into a dissolved state, which could be re-precipitated with the released iron ions. Thus, this study provides a reliable strategy for the remediation of As, Cd, and Pb combined pollution in soil.

18.
J Hazard Mater ; 443(Pt B): 130378, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36444069

ABSTRACT

Here, a novel phosphate-solubilizing bacterium (PSB), Klebsiella aerogenes Wn was applied to develop an environmental-friendly method to simultaneously stabilize Pb and Cd. The maximum dissolved phosphate was up to 701.36 mg/L by the strain Wn. The high performance liquid chromatography (HPLC) and Pearson correlation analyses showed that the acetic acid produced by the strain Wn was significantly positively associated with the released phosphate. Moreover, 100% of 500 mg/L of Pb and 100 mg/L of Cd were simultaneously stabilized in the classical NBRIP medium and the major products were Pb5(PO4)3Cl, Ca7.7Cd0.8(PO4)8(H2O)2.4 and CdS, respectively. In addition, the bacterial genome and transcriptome analyses showed that the pentose phosphate pathway (PPP), pyruvate metabolism pathway, thiamine metabolic pathway, sulfate reduction and ammonium bio-transformation were coupled to promote releasing insoluble phosphate and stabilizing Pb and Cd. In the metabolism networks, the critical genes of gcd, aceE, thiE, thiS and cysH, etc. were significantly up-regulated. Our results are beneficial to deeper understand the molecular mechanisms of releasing insoluble inorganic phosphate by PSBs and develop a technology prototype to simultaneously stabilize Pb and Cd using the PSBs.


Subject(s)
Ammonium Compounds , Enterobacter aerogenes , Sulfates , Phosphates , Cadmium , Lead , Organic Chemicals
19.
Chemosphere ; 313: 137428, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36460147

ABSTRACT

Multi-metal contaminated soil, such as Cr(VI), Cu(II), and Co(II), still challenge the environmental remediation. In this work, zerovalent iron-loaded hydroxyapatite (ZVI/HAP) was first applied to simultaneously adsorb multi-metal in contaminated soil. During the remediation, the co-existing Cu(II), Ni(II), and Co(II) were adsorbed and precipitated onto ZVI/HAP. This "spontaneous deposition" simultaneously achieved the adsorption of the cationic metals and improved the isoelectric point of ZVI/HAP to 4.83 from 1.59, thus significantly alleviating the electronegativity to enhance the capture and reduction efficiency of Cr(VI). The application of ZVI/HAP resulted in the reduction of more than 99% of total Cr(VI) in contaminated soil, and the almost complete adsorption of water-soluble and DTPA-extractable Cu, Ni and Co within 20 d. Based on the sequential extraction and risk reduction assessment, soil Cr, Cu, Ni, and Co speciation was transformed from an unstable state (exchangeable and carbonate-bound fractions) to a relatively stable state, reducing the risk of heavy metals in contaminated soil significantly. This study developed an efficient strategy for the remediation of multi-metal contaminated soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Iron , Adsorption , Soil Pollutants/analysis , Chromium , Soil , Hydroxyapatites
20.
J Hazard Mater ; 439: 129693, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36104925

ABSTRACT

The discharge of toxic heavy metals poses a serious threat to human health and environment. The existing water purification systems are lack of promising materials for rapid, efficient, and cost-efficient remediation of numerous toxic heavy metals. Herein, we report on the development of L-cysteine (Cys) intercalated Mg-Al layered double hydroxide (MgAl-LDH/Cys) with a loose lamellar porous architecture as an efficient and economically viable adsorbent for Pb(II) and Cd(II) removal. The intercalation with Cys creates dual functionality, i.e., the interlayer expansion accelerates the diffusion of heavy metals, while Cys acts as additional capture sites for heavy metals. Therefore, remarkable high maximum sorption capacities of 279.58 and 135.68 mg g-1 for Pb(II) and Cd(II) were obtained for MgAl-LDH/Cys compared to those for pristine MgAl-LDH (30.15 and 36.77 mg g-1). MgAl-LDH/Cys exhibits also much faster sorption kinetics in comparison with MgAl-LDH. Such enhancements are attributed to the intercalation of the chelating agent Cys in the MgAl-LDH interlayer channels. Moreover, it is proposed that the adsorption mechanisms involve the isomorphous replacement of Mg sites by Cd(II) forming CdAl-LDH, the precipitation of PbS and CdS, and the chelation of sulfhydryl, carboxyl and amine groups toward Cd(II). Altogether, its facile and environmentally friendly fabrication, ultrahigh sorption efficiencies, and rapid kinetics demonstrate that MgAl-LDH/Cys has potential for practical applications in heavy metal remediation.


Subject(s)
Cysteine , Metals, Heavy , Cadmium , Humans , Hydroxides
SELECTION OF CITATIONS
SEARCH DETAIL
...