Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 356: 124364, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878811

ABSTRACT

The widespread use of chlorine-based disinfectants in drinking water treatment has led to the proliferation of chlorine-resistant bacteria and the risk of disinfection byproducts (DBPs), posing a serious threat to public health. This study aims to explore the effectiveness and potential applications of epigallocatechin gallate (EGCG) against chlorine-resistant Bacillus and its spores in water, providing new insights for the control of chlorine-resistant bacteria and improving the biological stability of distribution systems. The inactivation effects of EGCG on Bacillus subtilis (B. subtilis) and its spores were investigated using transmission electron microscopy, ATP measurement, and transcriptome sequencing analysis to determine changes in surface structure, energy metabolism, and gene expression levels, thereby elucidating the inactivation mechanism. The results demonstrate the potential application of EGCG in continuously inhibiting chlorine-resistant B. subtilis in water, effectively improving the biological stability of the distribution system. However, EGCG is not suitable for treating raw water with high spore content and is more suitable as a supplementary disinfectant for processes with strong spore removal capabilities, such as ozone, ultraviolet, or ultrafiltration. EGCG exhibits a disruptive effect on the morphological structure and energy metabolism of B. subtilis and suppresses the synthesis of substances, energy metabolism, and normal operation of the antioxidant system by inhibiting the expression of multiple genes, thereby achieving the inactivation of B. subtilis.

2.
Autophagy ; : 1-17, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762757

ABSTRACT

Bleomycin exhibits effective chemotherapeutic activity against multiple types of tumors, and also induces various side effects, such as pulmonary fibrosis and neuronal defects, which limit the clinical application of this drug. Macroautophagy/autophagy has been recently reported to be involved in the functions of bleomycin, and yet the mechanisms of their crosstalk remain insufficiently understood. Here, we demonstrated that reactive oxygen species (ROS) produced during bleomycin activation hampered autophagy flux by inducing lysosomal membrane permeabilization (LMP) and obstructing lysosomal degradation. Exhaustion of ROS with N-acetylcysteine relieved LMP and autophagy defects. Notably, we observed that LMP and autophagy blockage preceded the emergence of cellular senescence during bleomycin treatment. In addition, promoting or inhibiting autophagy-lysosome degradation alleviated or exacerbated the phenotypes of senescence, respectively. This suggests the alternation of autophagy activity is more a regulatory mechanism than a consequence of bleomycin-induced cellular senescence. Taken together, we reveal a specific role of bleomycin-induced ROS in mediating defects of autophagic degradation and further regulating cellular senescence in vitro and in vivo. Our findings, conversely, indicate the autophagy-lysosome degradation pathway as a target for modulating the functions of bleomycin. These provide a new perspective for optimizing bleomycin as a clinically applicable chemotherapeutics devoid of severe side-effects.Abbreviations: AT2 cells: type II alveolar epithelial cells; ATG7: autophagy related 7; bEnd.3: mouse brain microvascular endothelial cells; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; CCL2: C-C motif chemokine ligand 2; CDKN1A: cyclin dependent kinase inhibitor 1A; CDKN2A: cyclin dependent kinase inhibitor 2A; FTH1: ferritin heavy polypeptide 1; γ-H2AX: phosphorylated H2A.X variant histone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HUVEC: human umbilical vein endothelial cells; HT22: hippocampal neuronal cell lines; Il: interleukin; LAMP: lysosomal-associated membrane protein; LMP: lysosome membrane permeabilization; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; NCOA4: nuclear receptor coactivator 4; PI3K: phosphoinositide 3-kinase; ROS: reactive oxygen species; RPS6KB/S6K: ribosomal protein S6 kinase; SA-GLB1/ß-gal: senescence-associated galactosidase, beta 1; SAHF: senescence-associated heterochromatic foci; SASP: senescence-associated secretory phenotype; SEC62: SEC62 homolog, preprotein translocation; SEP: superecliptic pHluorin; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB.

3.
Int J Biol Macromol ; : 131730, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38688794

ABSTRACT

Transcatheter arterial chemoembolization (TACE) is an effective method for the treatment of unresectable hepatocellular carcinoma. Although many embolic agents have been developed in TACE, there are few ideal embolic agents that combine drug loading, imaging properties and vessel embolization. Here, we developed novel magnetic embolic microspheres that could simultaneously load sunitinib malate (SU), be detected by magnetic resonance imaging (MRI) and block blood vessels. Calcium alginate/poly (acrylic acid) hydrogel microspheres (CA/PAA-MDMs) with superparamagnetic iron oxide nanoparticles (SPIONs) modified by citric acid were prepared by a drip and photopolymerization method. The embolization and imaging properties of CA/PAA-MDMs were evaluated through a series of experiments such as morphology, X-ray diffraction and X-ray photoelectron spectroscopy, magnetic responsiveness analysis, elasticity, cytotoxicity, hemolysis test, in vitro MRI evaluation, rabbit ear embolization and histopathology. In addition, the ability of drug loading and drug release of CA/PAA-MDMs were investigated by using sunitinib (SU) as the model drug. In conclusion, CA/PAA-MDMs showed outstanding drug loading capability, excellent imaging property and embolization effect, which would be expected to be used as a potential biodegradable embolic agent in the clinical interventional therapy.

4.
J Sep Sci ; 47(1): e2300616, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38095533

ABSTRACT

To reveal the utilization value of leaf, stem, and root of Artemisia argyi, a rapid online liquid microextraction combined with a high-performance liquid chromatography coupled with 2,2-nitrogen-di (3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt antioxidant assay system was established for analysis of antioxidants in the leaf, stem, and root of A. argyi, and a calibration quantitative method of antioxidant activity with equivalent chlorogenic acid was proposed. Thirty-three positive peaks were identified; among them, 12 compounds were found that possess good antioxidant activity including eleven organic acids (components 2-4, 8, 11-14, 17, 19, and 21) and one flavonoids (component 22). The proposed calibration quantitative method avoided the influence of content of compound and compared the extent of radical scavenging capacity of five antioxidant compounds, which were ranked as follow: 3,5-dicaffeoylquinic acid > 3,4-dicaffeoylquinic acid ≈ 4,5-dicaffeoylquinic acid > 1,4-dicaffeoylquinic acid > chlorogenic acid. In conclusion, this study provided composition and biological potential for the future development of the leaf, stem, and root of A. argyi. It is believed that the online liquid microextraction combined with high-performance liquid chromatography based antioxidant assay system can be widely used for the rapid screening of natural antioxidant components in the different parts of natural products.


Subject(s)
Artemisia , Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Antioxidants/analysis , Drugs, Chinese Herbal/analysis , Artemisia/chemistry , Chlorogenic Acid/analysis , Calibration , Plant Leaves/chemistry
5.
Front Cell Dev Biol ; 11: 1207748, 2023.
Article in English | MEDLINE | ID: mdl-37465011

ABSTRACT

Background: The transfer of mitochondria from healthy mesenchymal stem cells (MSCs) to injured MSCs has been shown to have potential therapeutic benefits for neural cell post-ischemic stroke. Specifically, functional mitochondria can perform their normal functions after being internalized by stressed cells, leading to host cell survival. However, while this approach shows promise, there is still a lack of understanding regarding which neural cells can internalize functional mitochondria and the regulatory mechanisms involved. To address this gap, we investigated the ability of different neural cells to internalize exogenous functional mitochondria extracted from MSCs. Methods: Functional mitochondria (F-Mito) isolated from umbilical cord derived-MSCs (UCMSCs) were labeled with lentivirus of HBLV-mito-dsred-Null-PURO vector. The ability of stressed cells to internalize F-Mito was analyzed using a mouse (C57BL/6 J) middle cerebral artery occlusion (MCAO) model and an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model. The cell viability was measured by CCK-8 kit. Time-course of intracellular ROS levels in stressed cells were analyzed by DCFH-DA staining after OGD/R and F-Mito treatment. MitoSOX, Mitotracker and WGA labeling were used to assess the relationship between ROS levels and the uptake of F-Mito at the single-cell level. Pharmacological modulation of ROS was performed using acetylcysteine (ROS inhibitor). Results: Our findings demonstrate that neurons and endothelial cells are more effective at internalizing mitochondria than astrocytes, both in vitro and in vivo, using an ischemia-reperfusion model. Additionally, internalized F-Mito decreases host cell reactive oxygen species (ROS) levels and rescues survival. Importantly, we found that the ROS response in stressed cells after ischemia is a crucial determinant in positively mediating the internalization of F-Mito by host cells, and inhibiting the generation of ROS chemicals in host cells may decrease the internalization of F-Mito. These results offer insight into how exogenous mitochondria rescue neural cells via ROS response in an ischemic stroke model. Overall, our study provides solid evidence for the translational application of MSC-derived mitochondria as a promising treatment for ischemic stroke.

6.
Neural Regen Res ; 18(11): 2474-2481, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37282479

ABSTRACT

Maintaining the integrity of the blood-spinal cord barrier is critical for the recovery of spinal cord injury. Ferroptosis contributes to the pathogenesis of spinal cord injury. We hypothesized that ferroptosis is involved in disruption of the blood-spinal cord barrier. In this study, we administered the ferroptosis inhibitor liproxstatin-1 intraperitoneally after contusive spinal cord injury in rats. Liproxstatin-1 improved locomotor recovery and somatosensory evoked potential electrophysiological performance after spinal cord injury. Liproxstatin-1 maintained blood-spinal cord barrier integrity by upregulation of the expression of tight junction protein. Liproxstatin-1 inhibited ferroptosis of endothelial cell after spinal cord injury, as shown by the immunofluorescence of an endothelial cell marker (rat endothelium cell antigen-1, RECA-1) and ferroptosis markers Acyl-CoA synthetase long-chain family member 4 and 15-lipoxygenase. Liproxstatin-1 reduced brain endothelial cell ferroptosis in vitro by upregulating glutathione peroxidase 4 and downregulating Acyl-CoA synthetase long-chain family member 4 and 15-lipoxygenase. Furthermore, inflammatory cell recruitment and astrogliosis were mitigated after liproxstatin-1 treatment. In summary, liproxstatin-1 improved spinal cord injury recovery by inhibiting ferroptosis in endothelial cells and maintaining blood-spinal cord barrier integrity.

7.
Plants (Basel) ; 12(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36840165

ABSTRACT

Amino acid transporters (AATs) are integral membrane proteins and play important roles in plant growth and development as well as environmental responses. In contrast to the amino acid permease (AAP) subfamily, functional studies of the lysine and histidine transporter (LHT) subfamily have not been made in rice. In the current study, six LHT genes were found in the rice genome. To further investigate the functions of these genes, analyses were performed regarding gene and protein structures, chromosomal locations, evolutionary relationships, cis-acting elements of promoters, gene expression, and yeast complementation. We found that the six OsLHT genes are distributed on 4 out of the 12 chromosomes and that the six OsLHT genes were grouped into two clusters based on the phylogenetic analysis. Protein structure analyses showed that each OsLHT protein has 11 helical transmembrane domains. Yeast complementation assays showed that these OsLHT genes have conserved transport substrates within each cluster. The four members from cluster 1 showed broad amino acid selectivity, while OsLHT5 and OsLHT6 may transport other substrates besides amino acids. Additionally, quantitative real-time PCR analysis of the six OsLHT genes revealed that they have different expression patterns at different developmental stages and in different tissues. It also revealed that some OsLHT genes were responsive to PEG, NaCl and cold treatments, indicating their critical roles in abiotic stress response. Our results will be useful for further characterizing the crucial biological functions of rice LHT genes.

8.
Article in English | MEDLINE | ID: mdl-36704212

ABSTRACT

The root of Polygonum bistorta (PB) is a traditional Chinese medicinal plant material widely used in China. It has been commonly used for the treatment of hemostasis, detumescence, diarrhea, snake bite, and acute gastroenteritis. However, the research on the antioxidant properties and bioactive compounds from PB is inadequate. In the current research, an online microextraction (OLME) coupled with a high-performance liquid chromatography coupled with the 2,2-nitrogen-di (3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt antioxidant assay (HPLC-ABTS) system for rapid analysis of antioxidants from PB was proposed. The PB sample (0.17 mg) was online extracted by mobile phase (acetonitrile and 0.2% acetic acid); a Poroshell 120 SB-Aq column was used for separation; then, an online ABTS assay system was used for screening the antioxidants. Finally, ten components were found in PB, and among them, eight components possessed antioxidant activities. Furthermore, five components (gallic acid, neochlorogenic acid, caffeic acid, chlorogenic acid, and an unknown compound) were proved as major antioxidants when compared with rutin as an antioxidant marker. The results showed that the developed OLME-HPLC-ABTS system was a simple, rapid, green, and efficient instrument for the screening of antioxidants from PB, which provides a powerful tool for the discovery of natural antioxidants in Chinese medicines.

9.
J Water Health ; 20(11): 1611-1628, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36448612

ABSTRACT

Disinfection by-products (DBPs) generated during the disinfection of drinking water have become an urgent problem. So, tea polyphenol, a natural green disinfectant, has attracted widespread attention in recent years. This review summarizes the antibacterial mechanism of tea polyphenols and the recent findings on tea polyphenols as disinfectants for drinking water. These studies show that tea polyphenol is an antibacterial agent that works through different mechanisms and can be used as a supplementary disinfectant because of its higher lasting effect and economical cost. The dosage of tea polyphenols as a disinfectant of ultrafiltration effluent is the lowest among all the tea polyphenols disinfection methods, which can ensure the microbial safety of drinking water. This application of tea polyphenols is deemed a practical solution to solving the issue of disinfecting drinking water and reducing DBPs. However, it is necessary to further explore the influence of factors such as pipeline materials on the disinfection process and efficacy to expand the application scope of tea polyphenols. The large-scale application of tea polyphenols still needs to be fine-tuned but with new developments in tea polyphenol purification technology and the long-term need for drinking water that is safe for human consumption, tea polyphenols have good prospects for further development.


Subject(s)
Disinfectants , Drinking Water , Humans , Disinfectants/pharmacology , Polyphenols/pharmacology , Anti-Bacterial Agents , Tea
10.
Food Funct ; 13(11): 5899-5913, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35583219

ABSTRACT

Sweet tea (Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response etc.


Subject(s)
Diabetes Mellitus , Fagaceae , Insulin Resistance , Animals , Antioxidants , Blood Glucose/metabolism , Chalcones , Cholesterol, LDL , Fagaceae/chemistry , Tea
11.
Neuromodulation ; 25(3): 433-442, 2022 04.
Article in English | MEDLINE | ID: mdl-35396073

ABSTRACT

BACKGROUND: Transcutaneous auricular vagus nerve stimulation (taVNS) may modulate cardiac autonomic function. However, the response rate of the traditional tonic paradigm is low, and the results remain inconsistent. A recent pilot study presented a novel burst paradigm to activate the cardiac parasympathetic system, which might offer a new approach to treat cardiac autonomic function. The present study reassessed the effect of burst taVNS on modulating heart rate variability and explored the difference between burst and traditional tonic paradigms. MATERIALS AND METHODS: Forty-two young adults were recruited for this study. Each participant underwent three types of taVNS with sham (30 sec of stimulation), tonic (25 Hz, 500 µsec), and burst (five pulses at 500 Hz every 200 msec) paradigms, respectively, with simultaneous electrocardiogram recording. One-way analysis of variance, multivariate analysis of variance, and linear regression were used for analysis. Multiple testing was performed using Bonferroni correction. RESULTS: Both burst and tonic paradigms induced a significant decrease in heart rate, which continued until poststimulation, and increased cardiac parasympathetic activity. Moreover, two parasympathetic system indicators showed significant increase only in burst taVNS. The response rates during burst (35.7%) and tonic (38.1%) stimulations were both higher than that during sham stimulation (11.9%). The response to taVNS showed parameter specificity with few nonresponders to the tonic paradigm responding to the burst paradigm. The overall response rate increased from 38.1% in tonic taVNS to 54.8% in taVNS using both burst and tonic paradigms. For both burst and tonic responders, baseline cardiac parasympathetic activity was found to be significantly negatively correlated with changes during stimulation. CONCLUSION: The burst parameter could be used as an alternative strategy for regulating cardiac parasympathetic function by taVNS, which has the potential to be used as a complementary paradigm to traditional tonic taVNS for promoting clinical treatment efficacy.


Subject(s)
Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Autonomic Nervous System , Humans , Pilot Projects , Transcutaneous Electric Nerve Stimulation/methods , Vagus Nerve/physiology , Vagus Nerve Stimulation/methods , Young Adult
12.
Neurosci Bull ; 35(6): 1024-1034, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31432317

ABSTRACT

Huntington's disease (HD) is a deadly neurodegenerative disease with abnormal expansion of CAG repeats in the huntingtin gene. Mutant Huntingtin protein (mHTT) forms abnormal aggregates and intranuclear inclusions in specific neurons, resulting in cell death. Here, we tested the ability of a natural heat-shock protein 90 inhibitor, Gedunin, to degrade transfected mHTT in Neuro-2a cells and endogenous mHTT aggregates and intranuclear inclusions in both fibroblasts from HD patients and neurons derived from induced pluripotent stem cells from patients. Our data showed that Gedunin treatment degraded transfected mHTT in Neuro-2a cells, endogenous mHTT aggregates and intranuclear inclusions in fibroblasts from HD patients, and in neurons derived from induced pluripotent stem cells from patients in a dose- and time-dependent manner, and its activity depended on the proteasomal pathway rather than the autophagy route. These findings also showed that although Gedunin degraded abnormal mHTT aggregates and intranuclear inclusions in cells from HD patient, it did not affect normal cells, thus providing a new perspective for using Gedunin to treat HD.


Subject(s)
Huntingtin Protein/drug effects , Huntington Disease/drug therapy , Intranuclear Inclusion Bodies/drug effects , Limonins/pharmacology , Mutant Proteins/drug effects , Protein Aggregates/drug effects , Animals , Cell Culture Techniques , Fibroblasts/drug effects , Heat-Shock Proteins/antagonists & inhibitors , Heat-Shock Proteins/metabolism , Humans , Huntingtin Protein/genetics , Induced Pluripotent Stem Cells/drug effects , Leupeptins/pharmacology , Mice , Mutation , Neurons/drug effects , Proteasome Endopeptidase Complex , Transfection
13.
Comput Assist Surg (Abingdon) ; 24(sup2): 117-125, 2019 10.
Article in English | MEDLINE | ID: mdl-31401896

ABSTRACT

At present, in the field of electroencephalogram (EEG) signal recognition, the classification and recognition in complex scenarios with more categories of EEG signals have gained more attention. Based on the joint fast Fourier transform (FFT) and support vector machine (SVM) methods, this study proposed a novel EEG signal-processing joint method for the complex scenarios with 10 classifications of EEG signals. Moreover, a comprehensive efficiency formula was put forward. The formula considered the accuracy and time consumption of the joint method. This new joint method could improve the accuracy and comprehensive efficiency of multiclass EEG signal recognition. The new joint approach used standardization for data preprocessing. Feature extraction was performed by combining FFT and principal component analysis methods. EEG signals were classified using the weighted k-nearest nenighbour method. In this study, experiments were conducted using public datasets of brainwave 0-9 digits classification. The result demonstrated that the accuracy and comprehensive efficiency of the novel joint method were 84% and 87%, respectively, which were better than those of the existing methods. The precision rate, recall rate, and F1 score of the novel joint method were 89%, 85%, and 0.85, respectively. In conclusion, the proposed joint method was effective in a complex scenario for multiclass EEG signal recognition.


Subject(s)
Algorithms , Electroencephalography , Signal Processing, Computer-Assisted , Epilepsy/physiopathology , Fourier Analysis , Humans , Principal Component Analysis , Support Vector Machine , Television
14.
Sci Adv ; 5(6): eaaw5075, 2019 06.
Article in English | MEDLINE | ID: mdl-31249871

ABSTRACT

Lymphangiogenesis is associated with chronic kidney disease (CKD) and occurs following kidney transplant. Here, we demonstrate that expanding lymphatic vessels (LVs) in kidneys and corresponding renal draining lymph nodes (RDLNs) play critical roles in promoting intrarenal inflammation and fibrosis following renal injury. Our studies show that lymphangiogenesis in the kidney and RDLN is driven by proliferation of preexisting lymphatic endothelium expressing the essential C-C chemokine ligand 21 (CCL21). New injury-induced LVs also express CCL21, stimulating recruitment of more CCR7+ dendritic cells (DCs) and lymphocytes into both RDLNs and spleen, resulting in a systemic lymphocyte expansion. Injury-induced intrarenal inflammation and fibrosis could be attenuated by blocking the recruitment of CCR7+ cells into RDLN and spleen or inhibiting lymphangiogenesis. Elucidating the role of lymphangiogenesis in promoting intrarenal inflammation and fibrosis provides a key insight that can facilitate the development of novel therapeutic strategies to prevent progression of CKD-associated fibrosis.


Subject(s)
Fibrosis/pathology , Inflammation/pathology , Kidney Diseases/pathology , Kidney/pathology , Lymph Nodes/pathology , Lymphangiogenesis/physiology , Animals , Chemokine CCL21/metabolism , Dendritic Cells/metabolism , Dendritic Cells/pathology , Fibrosis/metabolism , Inflammation/metabolism , Kidney/metabolism , Kidney Diseases/metabolism , Lymph Nodes/metabolism , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Lymphocytes/metabolism , Lymphocytes/pathology , Mice , Mice, Inbred C57BL
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 222: 117159, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31176157

ABSTRACT

Yb3+/Tm3+ co-doped LiNbO3 crystals were proposed to explore the temperature sensing characteristics of non-thermally coupled levels from Tm3+ ions. The prepared polycrystal is opaque and single crystal is transparent. Under 980 nm excitation, upconversion spectra were investigated at different temperatures changed from 323 K to 773 K. It is found the deep red (3F2,3 → 3H6) and blue (1G4 → 3H6) or red (1G4 → 3F4) emissions of Tm3+ ions exhibit opposite temperature dependent behaviors, so their temperature sensing characteristics are studied. The results indicate the temperature sensitivity is mainly affected by crystallinity of host material and concerned energy levels of FIR (fluorescence intensity ratio). As a consequence, the maximum relative sensitivity of about 0.7% K-1 is achieved based on the non-thermally coupled levels of Tm3+ ion in LiNbO3 crystals. The polycrystal reveals more excellent temperature sensing properties in low temperature, and single crystal is more suitable for high temperature application. Moreover, it is discovered the stability of FIR with different powers greatly depends on the concerned energy levels. This work may contribute a feasible and expansible way to further survey the sensitivity of optical temperature sensor and promote its applications.

16.
NMR Biomed ; 32(7): e4097, 2019 07.
Article in English | MEDLINE | ID: mdl-31058381

ABSTRACT

Although magnetization transfer (MT) has been widely used in brain MRI, for example in brain inflammation and multiple sclerosis, the detailed molecular origin of MT effects and the role that proteins play in MT remain unclear. In this work, a proteoliposome model system was used to mimic the myelin environment and to examine the roles of protein, cholesterol, brain cerebrosides, and sphingomyelin embedded in the liposome matrix. Exchange parameters were determined using a double-quantum filter experiment. The goal was to determine the relative contributions to exchange and MT of cerebrosides, sphingomyelin, cholesterol, and proteins in 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayers. The main finding was that cerebrosides produced the strongest exchange effects, and that these were even more pronounced than those found for proteins. Sphingomyelin (which also has exchangeable groups at the head of the fatty acid chains, albeit closer to the lipid acyl chains) and cholesterol showed only minimal transfer. Overall, the extracted exchange rates appeared much smaller than commonly assumed for -OH and -NH groups.


Subject(s)
Liposomes/chemistry , Magnetic Resonance Spectroscopy , Myelin Sheath/chemistry , Proteolipids/chemistry , Lipids/chemistry , Water/chemistry
17.
Sensors (Basel) ; 19(7)2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30959760

ABSTRACT

Feature extraction of electroencephalography (EEG) signals plays a significant role in the wearable computing field. Due to the practical applications of EEG emotion calculation, researchers often use edge calculation to reduce data transmission times, however, as EEG involves a large amount of data, determining how to effectively extract features and reduce the amount of calculation is still the focus of abundant research. Researchers have proposed many EEG feature extraction methods. However, these methods have problems such as high time complexity and insufficient precision. The main purpose of this paper is to introduce an innovative method for obtaining reliable distinguishing features from EEG signals. This feature extraction method combines differential entropy with Linear Discriminant Analysis (LDA) that can be applied in feature extraction of emotional EEG signals. We use a three-category sentiment EEG dataset to conduct experiments. The experimental results show that the proposed feature extraction method can significantly improve the performance of the EEG classification: Compared with the result of the original dataset, the average accuracy increases by 68%, which is 7% higher than the result obtained when only using differential entropy in feature extraction. The total execution time shows that the proposed method has a lower time complexity.


Subject(s)
Discriminant Analysis , Emotions/physiology , Algorithms , Electroencephalography , Entropy , Humans
18.
Stem Cell Res ; 34: 101354, 2019 01.
Article in English | MEDLINE | ID: mdl-30611022

ABSTRACT

The human iPS cell line, hiPS-SPG76 (FJMUi001-A), derived from skin fibroblasts from a 42-year-old male hereditary spastic paraplegia patient carrying compound heterozygous p.P498L (c.1493C > T) and p.R618W (c.1852C > T) mutations in the CAPN1 gene, was generated by non-integrative reprogramming vectors encoding OCT3/4, SOX2, KLF4, and c-MYC. The established hiPS-SPG76 was free of genomically integrated reprogramming genes, had a normal karyotype, expressed pluripotency markers, and had capacity to form three germ layers in vitro and in vivo. This generated hiPS cell line offers a useful resource to study the pathogenesis of SPG76.


Subject(s)
Calpain/genetics , Cell Culture Techniques/methods , Induced Pluripotent Stem Cells/pathology , Mutation/genetics , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/pathology , Adult , Base Sequence , Cell Line , Heterozygote , Humans , Kruppel-Like Factor 4 , Male
19.
Entropy (Basel) ; 21(8)2019 Aug 20.
Article in English | MEDLINE | ID: mdl-33267529

ABSTRACT

Thermally induced non-equilibrium gas flows have been simulated in the present study by coupling kinetic and extended thermodynamic methods. Three different types of thermally induced gas flows, including temperature-discontinuity- and temperature-gradient-induced flows and radiometric flow, have been explored in the transition regime. The temperature-discontinuity-induced flow case has shown that as the Knudsen number increases, the regularised 26 (R26) moment equation system will gradually loss its accuracy and validation. A coupling macro- and microscopic approach is employed to overcome these problems. The R26 moment equations are used at the macroscopic level for the bulk flow region, while the kinetic equation associated with the discrete velocity method (DVM) is applied to describe the gas close to the wall at the microscopic level, which yields a hybrid DVM/R26 approach. The numerical results have shown that the hybrid DVM/R26 method can be faithfully used for the thermally induced non-equilibrium flows. The proposed scheme not only improves the accuracy of the results in comparison with the R26 equations, but also extends their capability with a wider range of Knudsen numbers. In addition, the hybrid scheme is able to reduce the computational memory and time cost compared to the DVM.

20.
Sci Rep ; 8(1): 15190, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30315312

ABSTRACT

The continuous Ti-Cu compound layer produced in brazing of graphite to copper with Ti foil is found to be seriously detrimental to joint properties due to its brittleness. In this work, a transient liquid phase (TLP) bonding method with a diffusion process below melting point is developed to realize a Ti-Cu compound layer free joint. The degradation of Ti-Cu compound layer depends on two simultaneously occurring processes, namely flow of titanium atoms to copper substrate and that to TiC layer on graphite. The latter is determined by growth kinetics of TiC layer based on carbon diffusion process. A degradation model is proposed and applied to optimize the TLP bonding. The improved graphite/copper joints without Ti-Cu compound layer show 20.8% higher in shear strength compared with that of brazing joints.

SELECTION OF CITATIONS
SEARCH DETAIL
...