Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 421
Filter
1.
Int J Antimicrob Agents ; : 107228, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823494

ABSTRACT

The rapid dissemination of carbapenem-resistant Enterobacterales (CRE) especially carbapenem-resistant K. pneumoniae (CRKP) poses a great threat to global public health. Ceftazidime-avibactam, a novel ß-lactam/ß-lactamase inhibitor combination, has been widely used due to its excellent antibacterial activity against KPC-producing K. pneumoniae. However, several resistance mechanisms have been reported since its use. Here, we conducted a series of in vitro experiments to reveal and demonstrate the dynamic evolution of ceftazidime-avibactam resistance including interspecies IncX3_NDM-5 plasmid transfer between E. cloacae and K. pneumoniae and blaKPC mutation from blaKPC-2 to blaKPC-33. Through the analysis of conjugation frequency and fitness cost, the IncX3_NDM-5 plasmid in this study showed strong transmissibility and stability in E. coli EC600 and clinical strain K. pneumoniae 5298 as recipient strain. With increasing ceftazidime-avibactam concentration, the conjugation frequency remained at 10-3-10-5, while the mutation frequency of K. pneumoniae 5298 was 10-6-10-8 at the same concentration. Further plasmid analysis (the IncX3_NDM plasmid from this study and other 658 plasmids from the NCBI database) revealed the diverse origin and genetic structure of blaNDM-5 carrying plasmids. E. coli (42.9%), China (43.9%), IncX3 (66.6%) are the most common strains, regions, and Inc types respectively. By analysing of genetic environment detected in IncX3 plasmids, the dominant structures (168/258, 65.1%) were identified: ISKox3-IS26-blaNDM-5-IS5-ISAba125-Tn3000-Tn3. In additon, several structural variations were found in the core gene structure. In conclusion, the high fitness and transmissibility of the IncX3_NDM-5 plasmids were noteworthy. More importantly, the diverse ceftazidime-avibactam resistance mechanisms including blaNDM-5 tranfer and blaKPC-2 mutation highlighted the importance of the continuous monitoring of antimicrobial susceptibility and carbapenemases subtype during ceftazidime-avibactam treatment.

2.
Sleep ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695327

ABSTRACT

While rapid eye movement (REM) sleep is conventionally treated as a unified state, it comprises two distinct microstates: phasic and tonic REM. Recent research emphasizes the importance of understanding the interplay between these microstates, hypothesizing their role in transient shifts between sensory detachment and external awareness. Previous studies primarily employed linear metrics to probe cognitive states, such as oscillatory power, while in this study, we adopt Lempel-Ziv Complexity (LZC), to examine the nonlinear features of electroencephalographic (EEG) data from the REM microstates and to gain complementary insights into neural dynamics during REM sleep. Our findings demonstrate a noteworthy reduction in LZC during phasic REM compared to tonic REM states, signifying diminished EEG complexity in the former. Additionally, we noted a negative correlation between decreased LZC and delta band power, along with a positive correlation with alpha band power. This study highlights the potential of nonlinear EEG metrics, particularly LZC, in elucidating the distinct features of REM microstates. Overall, this research contributes to advancing our understanding of the complex dynamics within REM sleep and opens new avenues for exploring its implications in both clinical and non-clinical contexts.

3.
Toxics ; 12(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38787088

ABSTRACT

Effluent discharged from urban wastewater treatment plants (WWTPs) is a major source of emerging contaminants (ECs) requiring effective regulation. To this end, we collected discharge datasets of pharmaceuticals (PHACs) and endocrine-disrupting chemicals (EDCs), representing two primary categories of ECs, from Chinese WWTP effluent from 2012 to 2022 to establish an exposure database. Moreover, high-risk ECs' long-term water quality criteria (LWQC) were derived using the species sensitivity distribution (SSD) method. A total of 140 ECs (124 PHACs and 16 EDCs) were identified, with concentrations ranging from N.D. (not detected) to 706 µg/L. Most data were concentrated in coastal regions and Gansu, with high ecological risk observed in Gansu, Hebei, Shandong, Guangdong, and Hong Kong. Using the assessment factor (AF) method, 18 high-risk ECs requiring regulation were identified. However, only three of them, namely carbamazepine, ibuprofen, and bisphenol-A, met the derivation requirements of the SSD method. The LWQC for these three ECs were determined as 96.4, 1010, and 288 ng/L, respectively. Exposure data for carbamazepine and bisphenol-A surpassed their derived LWQC, indicating a need for heightened attention to these contaminants. This study elucidates the occurrence and risks of ECs in Chinese WWTPs and provides theoretical and data foundations for EC management in urban sewage facilities.

4.
Cell Commun Signal ; 22(1): 278, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762737

ABSTRACT

BACKGROUND: While de novo cholesterol biosynthesis plays a crucial role in chemotherapy resistance of colorectal cancer (CRC), the underlying molecular mechanism remains poorly understood. METHODS: We conducted cell proliferation assays on CRC cells with or without depletion of squalene epoxidase (SQLE), with or without 5-fluorouracil (5-FU) treatment. Additionally, a xenograft mouse model was utilized to explore the impact of SQLE on the chemosensitivity of CRC to 5-FU. RNA-sequencing analysis and immunoblotting analysis were performed to clarify the mechanism. We further explore the effect of SQLE depletion on the ubiquitin of NF-κB inhibitor alpha (IκBα) and (S)-2,3-epoxysqualene on the binding of IκBα to beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) by using immunoprecipitation assay. In addition, a cohort of 272 CRC patients were selected for our clinical analyses. RESULTS: Mechanistically, (S)-2,3-epoxysqualene promotes IκBα degradation and subsequent NF-κB activation by enhancing the interaction between BTRC and IκBα. Activated NF-κB upregulates the expression of baculoviral IAP repeat containing 3 (BIRC3), sustains tumor cell survival after 5-FU treatment and promotes 5-FU resistance of CRC in vivo. Notably, the treatment of terbinafine, an inhibitor of SQLE commonly used as antifungal drug in clinic, enhances the sensitivity of CRC to 5-FU in vivo. Additionally, the expression of SQLE is associated with the prognosis of human CRC patients with 5-FU-based chemotherapy. CONCLUSIONS: Thus, our finding not only demonstrates a new role of SQLE in chemoresistance of CRC, but also reveals a novel mechanism of (S)-2,3-epoxysqualene-dependent NF-κB activation, implicating the combined potential of terbinafine for 5-FU-based CRC treatment.


Subject(s)
Colorectal Neoplasms , Drug Resistance, Neoplasm , Fluorouracil , NF-kappa B , Squalene Monooxygenase , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Humans , Squalene Monooxygenase/metabolism , Squalene Monooxygenase/genetics , NF-kappa B/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Animals , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Mice , Cell Line, Tumor , Mice, Nude , Mice, Inbred BALB C , Female , Male , Cell Proliferation/drug effects , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/genetics , Xenograft Model Antitumor Assays
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 753-757, 2024 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-38818564

ABSTRACT

OBJECTIVE: To carry out genetic analysis on two families with carriers of small terminal translocations using karyotyping analysis and genomic copy number variation sequencing (CNV-seq). METHODS: Two couples undergoing prenatal diagnosis at the Tianjin Central Hospital of Obstetrics and Gynecology respectively on April 12, 2020 and December 17, 2021 were selected as the study subjects. With informed consent, amniotic fluid and peripheral blood samples were collected and subjected to conventional karyotyping and CNV-seq analysis for the detection of chromosomal microdeletion/duplications. RESULTS: Both couples had given births to children with chromosomal aberrations previously, and both fetuses were found to have abnormal karyotypes. CNV-seq showed that they had harbored microdeletion/duplications, and their mothers had both carried balanced translocations involving terminal fragments of chromosomes. CONCLUSION: For fetuses with small chromosomal segmental abnormalities, their parental origin should be traced, and the diagnosis should be confirmed with combined genetic techniques.


Subject(s)
DNA Copy Number Variations , Karyotyping , Prenatal Diagnosis , Humans , Prenatal Diagnosis/methods , Female , Pregnancy , Male , Adult , Chromosome Aberrations , Translocation, Genetic , Genetic Testing/methods , Chromosome Deletion
6.
Angew Chem Int Ed Engl ; : e202406650, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818631

ABSTRACT

Dispersion of single atoms (SAs) in the host is important for optimizing catalytic activity. Herein, we propose a novel strategy to tune oxygen vacancies in CeO2-X directionally anchoring the single atom platinum (PtSA), which is uniformly dispersed on the rGO. The catalyst's performance for the hydrogen evolution reaction (HER) can be enhanced by controlling different densities of CeO2-X in rGO. The PtSA performs best optimally densified and loaded on homogeneous and moderately densified CeO2-X/rGO (PtSA-M-CeO2-X/rGO). It exhibited high activity in HER with an overpotential of 25 mV at 0.5 M H2SO4 and 33 mV at 1 KOH than that of almost reported electrocatalysts. Furthermore, it exhibited stability for 90 hours at -100 mA cm-2 in 1 KOH and -150 mA cm-2 in 0.5 M H2SO4 conditions, respectively. Through comprehensive experiments and theoretical calculations, the suitable dispersion density of PtSA on the defects of CeO2-X with more active sites gives the potential for practical applications. This research paves the way for developing single-atom catalysts with exceptional catalytic activity and stability, holding promise in advanced green energy conversion through defects engineering.

7.
J Clin Microbiol ; : e0015424, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809033

ABSTRACT

The increasing use of ceftazidime-avibactam has led to the emergence of a wide range of ceftazidime-avibactam-resistant blaKPC-2 variants. Particularly, the conventional carbapenemase phenotypic assay exhibited a high false-negative rate for KPC-2 variants. In this study, three colloidal gold immunoassays, including the Gold Mountainriver CGI test, Dynamiker CGI test and NG-Test CARBA5, and GeneXpert Carba-R, were used to detect the presence of KPC-2 carbapenemase and its various variants in 42 Klebsiella pneumoniae strains. These strains covered blaKPC-2 (13/42) and 16 other blaKPC-2 variants including blaKPC-12 (1/42), blaKPC-23 (1/42), blaKPC-25 (1/42), blaKPC-33 (6/42), blaKPC-35 (1/42), blaKPC-44 (1/42), blaKPC-71 (1/42), blaKPC-76 (8/42), blaKPC-78 (1/42), blaKPC-79 (1/42), blaKPC-100 (1/42), blaKPC-127 (1/42), blaKPC-128 (1/42), blaKPC-144 (1/42), blaKPC-157 (2/42), and blaKPC-180 (1/42). For KPC-2 strains, all four assays showed 100% negative percentage agreement (NPA) and 100% positive percentage agreement (PPA) with sequencing results. For all 16 KPC-2 variants, GeneXpert Carba-R showed 100% NPA and 100% PPA, and the three colloidal gold immunoassays showed 100% NPA, while the PPAs of the Gold Mountainriver CGI test, Dynamiker CGI test, and NG-Test CARBA5 were 87.5%, 87.5%, and 68.8%, respectively. We also found a correlation between the mutation site in the amino acid of the variants and false-negative results by colloidal gold immunoassays. In conclusion, the GeneXpert Carba-R has been proven to be a reliable method in detecting KPC-2 and its variants, and the colloidal gold immunoassay tests offer a practical and cost-effective approach for their detection. For the sample with a negative result by a colloidal gold immunoassay test but not matching the drug-resistant phenotype, it is recommended to retest using another type of kit or the GeneXpert Carba-R assay, which can significantly improve the accuracy of detection.

8.
Sensors (Basel) ; 24(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732893

ABSTRACT

An abnormal level of dopamine (DA), a kind of neurotransmitter, correlates with a series of diseases, including Parkinson's disease, Willis-Ekbom disease, attention deficit hyperactivity disorder, and schizophrenia. Hence, it is imperative to achieve a precise, rapid detection method in clinical medicine. In this study, we synthesized nanocomposite carbon aerogels (CAs) doped with iron and iron carbide, based on algae residue-derived biomass materials, using Fe(NO3)3 as the iron source. The modified glassy carbon electrode (GCE) for DA detection, denoted as CAs-Fe/GCE, was prepared through surface modification with this composite material. X-ray photoelectron spectroscopy and X-ray diffraction characterization confirmed the successful doping of iron into the as-prepared CAs. Additionally, the electrochemical behavior of DA on the modified electrode surface was investigated and the results demonstrate that the addition of the CAs-Fe promoted the electron transfer rate, thereby enhancing their sensing performance. The fabricated electrochemical DA biosensor exhibits an accurate detection of DA in the concentration within the range of 0.01~200 µM, with a detection limit of 0.0033 µM. Furthermore, the proposed biosensor is validated in real samples, showing its high applicability for the detection of DA in beverages.


Subject(s)
Biosensing Techniques , Carbon , Dopamine , Electrochemical Techniques , Electrodes , Iron , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Dopamine/analysis , Dopamine/chemistry , Carbon/chemistry , Iron/chemistry , Electrochemical Techniques/methods , Gels/chemistry , Limit of Detection , Photoelectron Spectroscopy , Nanocomposites/chemistry
9.
Emerg Microbes Infect ; 13(1): 2356146, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38743401

ABSTRACT

Ceftazidime-avibactam (CZA) is employed for the treatment of infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-KP). Resistance to CZA is frequently linked to point mutations in the blaKPC. We conducted in vitro simulations of in vivo blaKPC mutations using CZA. Four pre-therapy KPC-KP isolates (K1, K2, K3, and K4) were evaluated, all initially exhibited susceptibility to CZA and produced KPC-2. The crucial distinction was that following CZA treatment, the blaKPC-2 mutated in K1, K2, and K3, rendering them resistant to CZA, while K4 achieved microbiological clearance, and blaKPC-2 remained unaltered. The induction assay identified various blaKPC-2 variants, including blaKPC-25, blaKPC-127, blaKPC-100, blaKPC-128, blaKPC-137, blaKPC-138, blaKPC-144 and blaKPC-180. Our findings suggest that the resistance of KPC-KP to CZA primarily results from the emergence of KPC variants, complemented by increased blaKPC expression. A close correlation exists between avibactam concentration and the rate of increased CZA minimum Inhibitory concentration, as well as blaKPC mutation. Inadequate avibactam concentration is more likely to induce resistance in strains against CZA, there is also a higher likelihood of mutation in the blaKPC-2 and the optimal avibactam ratio remains to be determined. Simultaneously, we selected a blaKPC-33-producing K. pneumoniae strain (mutated from blaKPC-2) and induced it with imipenem and meropenem, respectively. The blaKPC-2 was detected during the process, indicating that the mutation is reversible. Clinical use of carbapenems to treat KPC variant strains increases the risk of infection, as the gene can mutate back to blaKPC-2, rendering the strain even more cross-resistant to carbapenems and CZA.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacterial Proteins , Ceftazidime , Drug Combinations , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Mutation , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Phenotype , Hydrolysis , Kinetics
10.
Int J Antimicrob Agents ; : 107211, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795927

ABSTRACT

Providencia species are important opportunistic pathogens for humans and are associated with several infectious diseases. In this study, we found three clinical strains belonging to a novel Providencia species, namely Providencia huashanensis, including strains CRE-3FA-0001T, CRE-138-0026, and CRE-138-0111. These strains were recovered from three patients, and all of them were associated with nosocomial infections, including surgical site, urinary tract, and intracranial infections. The three strains showed high-level resistance to many types of antimicrobials, including amikacin, aztreonam, ceftazidime, cefepime, ciprofloxacin, colistin, polymyxin B, imipenem, meropenem, ceftazidime-avibactam, imipenem-relebactam. Investigation of the resistance mechanism revealed that acquired resistance genes such as blaKPC, blaNDM, blaPER, blaOXA, aac, ant, qnrD, etc., played an important role in the multidrug-resistant phenotype for the three strains. The phylogenetic trees were reconstructed based on the 16S rRNA gene sequences, multi-locus sequence analysis, and core SNPs. The genome sequence of the strains had a range of 83.5-85.8% average nucleotide identity (ANI) and 21-25.5% in silico DNA-DNA hybridization (isDDH) score with other Providencia type strains. The ANI&isDDH values and the phylogenetic tree indicated that the strains CRE-3FA-0001T, CRE-138-0026, and CRE-138-0111 strains should be considered as a novel species of the genus Providencia, for which the name P. huashanensis sp. nov. is proposed. The type strain is CRE-3FA-0001T =CCTCC AB 2023186T=KCTC 8373T.

11.
Front Pharmacol ; 15: 1315001, 2024.
Article in English | MEDLINE | ID: mdl-38562460

ABSTRACT

Introduction: Due to the cardiotoxicity of pirarubicin (THP), it is necessary to investigate new compounds for the treatment of THP-induced cardiotoxicity. Isoquercitrin (IQC) is a natural flavonoid with anti-oxidant and anti-apoptosis properties. Thus, the present study aimed to investigate the influence of IQC on preventing the THP-induced cardiotoxicity in vivo and in vitro. Methods: The optimal concentration and time required for IQC to prevent THP-induced cardiomyocyte damage were determined by an MTT assay. The protective effect was further verified in H9c2 and HCM cells using dichlorodihydrofluorescein diacetate fluorescent probes, MitoTracker Red probe, enzyme-linked immunosorbent assay, JC-1 probe, and real time-quantitative polymerase chain reaction (RT-qPCR). Rats were administered THP to establish cardiotoxicity. An electrocardiogram (ECG) was performed, and cardiac hemodynamics, myocardial enzymes, oxidative stress indicators, and hematoxylin-eosin staining were studied. Voltage-dependent anion channel 1 (VDAC1), adenine nucleotide translocase 1 (ANT1), and cyclophilin D (CYPD) were detected by qRT-PCR, and the Phlpp1/AKT/Bcl-2 axis proteins were detected by western blot, confirming that IQC markedly increased cell viability and superoxide dismutase (SOD) levels, diminished the levels of ROS and MDA, and elevated mitochondrial function and apoptosis in vivo and in vitro. Results: Results showed that IQC reduced THP-induced myocardial histopathological injury, electrocardiogram (ECG) abnormalities, and cardiac dysfunction in vivo. IQC also decreased serum levels of MDA, BNP, CK-MB, c-TnT, and LDH, while increasing levels of SOD and GSH. We also found that IQC significantly reduced VDAC1, ANT1, and CYPD mRNA expression. In addition, IQC controlled apoptosis by modulating Phlpp1/AKT/Bcl-2 signaling pathways. IQC markedly increased H9c2 and HCM cell viability and SOD levels, diminished the levels of ROS and MDA, and elevated mitochondrial function in H9c2 and HCM cells to defend against THP-induced cardiomyocyte apoptosis in vitro. The AKT inhibitor IMQ demonstrated that IQC lacked antioxidant and anti-apoptotic properties. Moreover, our data showed that IQC regulates Phlpp1 expression, thereby influencing the expression levels of p-AKT, cytochrome c, caspase-3, caspase-9, Bcl-2, and Bax. Discussion: In conclusion, our results indicate that IQC protects the changes in mitochondrial membrane permeability in cardiomyocytes by regulating the Phlpp1/AKT/Bcl-2 signaling pathway, inhibits the release of cytc from the mitochondrial inner membrane to the cytoplasm, forms apoptotic bodies, induces cell apoptosis, and reduces THP induced cardiotoxicity.

12.
World J Psychiatry ; 14(3): 434-444, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38617986

ABSTRACT

BACKGROUND: Hypertensive cerebral hemorrhage (HCH), the most common chronic diseases, has become a topic of global public health discussions. AIM: To investigate the role of rehabilitative nursing interventions in optimizing the postoperative mental status recovery phase and to provide clinical value for future rehabilitation of patients with HCH. METHODS: This randomized controlled study included 120 patients with cerebral HCH who were contained to our neurosurgery department between May 2021-May 2023 as the participants. The participants have randomly sampled and grouped into the observation and control groups. The observation group received the rehabilitation nursing model, whereas the control group have given conventional nursing. The conscious state of the patients was assessed at 7, 14, 21, and 30 d postoperatively. After one month of care, sleep quality, anxiety, and depression were compared between the two groups. Patient and family satisfaction were assessed using a nursing care model. RESULTS: The results showed that the state of consciousness scores of the patients in both groups significantly increased (P < 0.05) after surgical treatment. From the 14th day onwards, differences in the state of consciousness scores between the two groups of patients began to appear (P < 0.05). After one month of care, the sleep quality, anxiety state, and depression state of patients were significantly better in the observation group than in the control group (P < 0.05). Satisfaction with nursing care was higher in the observation group than in the control group (P < 0.05). CONCLUSION: The rehabilitation nursing model has a more complete system compared to conventional nursing, which can effectively improve the postoperative quality of life of patients with cerebral hemorrhage and improve the efficiency of mental state recovery; however, further analysis and research are needed to provide more scientific evidence.

13.
Int J Antimicrob Agents ; 63(6): 107163, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570018

ABSTRACT

Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses immense threats to the health of infected patients worldwide, especially children. This study reports the infection caused by CRKP in a paediatric intensive care unit (PICU) child and its drug-resistant mutation during the treatment. Twelve Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae strains were isolated from the child. Broth microdilution method, plasmid transformation assay, and whole genome sequencing (WGS) were performed to investigate the antimicrobial susceptibility, resistance mechanisms, and genetic structural features of CRKPs. The results showed that 12 strains were highly resistant to most available antimicrobial agents. Among them, K. pneumoniae FD11 and K. pneumoniae FD12 were resistant to ceftazidime-avibactam (CZA, MIC >64 mg/L) and restored the carbapenem susceptibility (Imipenem, MIC =0.25 mg/L; Meropenem, MIC =2 mg/L). The patient improved after treatment with CZA in combination with aztreonam. Plasmid transformation assay demonstrated that the blaKPC-33-positive transformant increased MICs of CZA by at least 33-fold and 8-fold compared with the recipient Escherichia coli DH5α and blaKPC-2-positive transformants. WGS analysis revealed that all strains belonged to the ST11-KL64 type and showed highly homologous (3-26 single nucleotide polymorphisms [SNPs]). A single base mutation (G532T) of blaKPC-2 resulted in a tyrosine to aspartic acid substitution at Ambler amino acid position 179 (D179Y), which conferred CZA resistance in K. pneumoniae. This is the first report of a drug-resistant mutation evolving into blaKPC-33 during the treatment of blaKPC-2-positive CRKP in paediatric-infected patients. It advises clinicians that routine sequential antimicrobial susceptibility testing and KPC genotyping are critical during CZA therapy in children infected with CRKP.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacterial Proteins , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/isolation & purification , Azabicyclo Compounds/pharmacology , Ceftazidime/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Whole Genome Sequencing , Drug Resistance, Multiple, Bacterial/genetics , Child , Plasmids/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Male , Aztreonam/pharmacology
14.
Ren Fail ; 46(1): 2334396, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38570195

ABSTRACT

OBJECTIVES: Calcium oxalate (CaOx) crystal deposition in acute kidney injury (AKI) patients is under recognized but impacts renal outcomes. This study investigates its determinants and effects. METHODS: We studied 814 AKI patients with native kidney biopsies from 2011 to 2020, identifying CaOx crystal deposition severity (mild: <5, moderate: 5-10, severe: >10 crystals per section). We assessed factors like urinary oxalate, citrate, urate, electrolytes, pH, tubular calcification index, and SLC26A6 expression, comparing them with creatinine-matched AKI controls without oxalosis. We analyzed how these factors relate to CaOx severity and their impact on renal recovery (eGFR < 15 mL/min/1.73 m2 at 3-month follow-up). RESULTS: CaOx crystal deposition was found in 3.9% of the AKI cohort (32 cases), with 72% due to nephrotoxic medication-induced tubulointerstitial nephritis. Diuretic use, higher urinary oxalate-to-citrate ratio induced by hypocitraturia, and tubular calcification index were significant contributors to moderate and/or severe CaOx deposition. Poor baseline renal function, low urinary chloride, high uric acid and urea nitrogen, tubular SLC26A6 overexpression, and glomerular sclerosis were also associated with moderate-to-severe CaOx deposition. Kidney recovery was delayed, with 43.8%, 31.2%, and 18.8% of patients having eGFR < 15 mL/min/1.73 m2 at 4, 12, and 24-week post-injury. Poor outcomes were linked to high urinary α1-microglobulin-to-creatinine (α1-MG/C) ratios and active tubular injury scores. Univariate analysis showed a strong link between this ratio and poor renal outcomes, independent of oxalosis severity. CONCLUSIONS: In AKI, CaOx deposition is common despite declining GFR. Factors worsening tubular injury, not just oxalate-to-citrate ratios, are key to understanding impaired renal recovery.


Subject(s)
Acute Kidney Injury , Calcinosis , Hyperoxaluria , Humans , Calcium Oxalate/chemistry , Creatinine/metabolism , Kidney/pathology , Hyperoxaluria/complications , Oxalates/metabolism , Acute Kidney Injury/pathology , Citrates/metabolism , Citric Acid
15.
Front Microbiol ; 15: 1286822, 2024.
Article in English | MEDLINE | ID: mdl-38655080

ABSTRACT

Winged helix (wH) domains, also termed winged helix-turn-helix (wHTH) domains, are widespread in all kingdoms of life and have diverse roles. In the context of DNA binding and DNA modification sensing, some eukaryotic wH domains are known as sensors of non-methylated CpG. In contrast, the prokaryotic wH domains in DpnI and HhiV4I act as sensors of adenine methylation in the 6mApT (N6-methyladenine, 6mA, or N6mA) context. DNA-binding modes and interactions with the probed dinucleotide are vastly different in the two cases. Here, we show that the role of the wH domain as a sensor of adenine methylation is widespread in prokaryotes. We present previously uncharacterized examples of PD-(D/E)XK-wH (FcyTI, Psp4BI), PUA-wH-HNH (HtuIII), wH-GIY-YIG (Ahi29725I, Apa233I), and PLD-wH (Aba4572I, CbaI) fusion endonucleases that sense adenine methylation in the Dam+ Gm6ATC sequence contexts. Representatives of the wH domain endonuclease fusion families with the exception of the PLD-wH family could be purified, and an in vitro preference for adenine methylation in the Dam context could be demonstrated. Like most other modification-dependent restriction endonucleases (MDREs, also called type IV restriction systems), the new fusion endonucleases except those in the PD-(D/E)XK-wH family cleave close to but outside the recognition sequence. Taken together, our data illustrate the widespread combinatorial use of prokaryotic wH domains as adenine methylation readers. Other potential 6mA sensors in modified DNA are also discussed.

16.
Metabolites ; 14(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38535331

ABSTRACT

Metabolic reprogramming has emerged as a prominent hallmark of cancer, characterized by substantial alterations in nutrient uptake and intracellular metabolic pathways. Consequently, intracellular metabolite concentrations undergo significant changes which can contribute to tumorigenesis through diverse mechanisms. Beyond their classical roles in regulating metabolic pathway flux, metabolites exhibit noncanonical functions that play a crucial role in tumor progression. In this review, we delve into the nonclassical functions of metabolites in the context of tumor progression, with a particular focus on their capacity to modulate gene expression and cell signaling. Furthermore, we discuss the potential exploitation of these nonclassical functions in the enhancement of cancer therapy.

17.
Talanta ; 273: 125856, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38442565

ABSTRACT

Simultaneous detection of multiple tumor biomarkers with a simple and low-cost assay is crucial for early cancer detection and diagnosis. Herein, we presented a low-cost and simple assay for multiplexed detection of tumor biomarkers using a spatially separated electrodes strategy. The sensor is fabricated based on a metal-free thiol-yne click reaction, which is mediated by visible light, on commercially available indium tin oxide (ITO) electrodes. Four biomarkers, including p53 DNA, Brca2 DNA, K-ras DNA, and MicroRNA-204 RNA, were used as model analytes, and the corresponding oligonucleotide probes were modified on the desired electrode units sequentially with 530 nm irradiation light in the presence of photosensitizer Eosin Y. By this visible light-mediated coupling reaction, oligonucleotide probe densities of up to 9.2 ± 0.7 × 1010 molecules/cm2 were readily obtained on the ITO electrode surface. The proposed multiplexed E-NA sensor could detect four different nucleic acid targets concurrently without crosstalk among adjacent electrodes and was also successfully applied for detecting targets in a 20% fetal calf serum sample. The detection limits for p53 DNA, Brca2 DNA, K-ras DNA, and MicroRNA-204 RNA were 0.72 nM, 0.97 nM, 2.15 nM, and 1.73 nM, respectively. The developed approach not only has a great potential for developing cost-effective biosensors on affordable substrates for nucleic acid target detection, but also be easily extended to detect other targets by modifying the specific oligonucleotide probes anchored on the electrode.


Subject(s)
Biosensing Techniques , MicroRNAs , Nucleic Acids , Oligonucleotide Probes , Sulfhydryl Compounds , Tumor Suppressor Protein p53/genetics , DNA , Electrodes , Gold , Biomarkers, Tumor , Light , Electrochemical Techniques
18.
Toxics ; 12(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38535904

ABSTRACT

Various studies have shown that the heavy use of pharmaceuticals poses serious ecological risks, especially in metropolitan areas with intensive human activities. In this study, the spatial distribution, sources, and ecological risks of 29 pharmaceuticals in 82 surface waters collected from the North Canal Basin in Beijing were studied. The results showed that the pharmaceutical concentrations ranged from not detected to 193 ng/L, with ampicillin being undetected while ofloxacin had a 100% detection frequency, which indicates the widespread occurrence of pharmaceutical pollution in the North Canal Basin. In comparison with other freshwater study areas, concentrations of pharmaceuticals in the North Canal Basin were generally at moderate levels. It was found that pharmaceutical concentrations were always higher in rivers that directly received wastewater effluents. Source analysis was conducted using the positive matrix factorization model. Combining the spatial pollution patterns of pharmaceuticals, it has been found that wastewater effluents contributed the most to the loads of pharmaceuticals in the studied basin, while in suburban areas, a possible contribution of untreated wastewater was demonstrated. Risk assessment indicated that approximately 55% of the pharmaceuticals posed low-to-high ecological risks, and combining the results of risk analyses, it is advised that controlling WWTP effluent is probably the most cost-effective measure in treating pharmaceutical pollution.

19.
Int J Antimicrob Agents ; 63(5): 107149, 2024 May.
Article in English | MEDLINE | ID: mdl-38508537

ABSTRACT

OBJECTIVES: blaKPC-carrying Enterobacterales have post great challenges to global healthcare systems. In this study, we reported the evolution and spread of blaKPC between Serratia marcescens and Klebsiella pneumoniae. METHODS: Four S. marcescens and one K. pneumoniae strains were isolated from the sputum samples of the patient. Antimicrobial susceptibility tests and whole genome sequencing were performed to investigate the phenotype & genotype of strains. Conjugation assays, cloning experiment and kinetic parameters measuring were performed to explore the spread and antimicrobial resistance mechanisms. RESULTS: The evolution and transmission of blaKPC-2 occurred during the treatment of ceftazidime-avibactam and trimethoprim-sulfamethoxazole. Analysis of the antimicrobial susceptibility and genetic profiles of the clinical strains showed that blaKPC-2 evolved into blaKPC-71 and blaKPC-44, together with resistance to ceftazidime-avibactam and carbapenems susceptibility recovery under antimicrobial pressure. Cloning and expression of blaKPC-44 & blaKPC-71 in E. coli DH5α showed that KPC-44 and KPC-71 resulted in a 64∼128-fold increase in the MIC value for ceftazidime-avibactam. Meanwhile, the kinetic assays also showed that the enzyme activity of KPC-44 and KPC-71 towards carbapenems was destroyed and couldn't be inhibited by avibactam. Based on the conjugation assay and whole genome sequence analyses, we provided evolutionary insights into the transmission pathway trace of blaKPC-bearing plasmids between S. marcescens and K. pneumoniae. CONCLUSIONS: Mixed-species co-infection is one of the risk factors leading to the spread of plasmids carrying carbapenem-resistant genes, and increased surveillance of multidrug-resistant Enterobacterales is urgently needed.


Subject(s)
Anti-Bacterial Agents , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Plasmids , Serratia Infections , Serratia marcescens , Whole Genome Sequencing , beta-Lactamases , Serratia marcescens/genetics , Serratia marcescens/drug effects , Serratia marcescens/isolation & purification , Serratia marcescens/enzymology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Humans , Plasmids/genetics , beta-Lactamases/genetics , Serratia Infections/microbiology , Serratia Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Ceftazidime/pharmacology , Drug Combinations , Drug Resistance, Multiple, Bacterial/genetics , Azabicyclo Compounds/pharmacology , Sputum/microbiology , Evolution, Molecular , Gene Transfer, Horizontal , Carbapenems/pharmacology
20.
Nat Commun ; 15(1): 2290, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480686

ABSTRACT

The precise structural integration of single-atom and high-entropy-alloy features for energy electrocatalysis is highly appealing for energy conversion, yet remains a grand challenge. Herein, we report a class of single-atom Mo-tailored PdPtNiCuZn high-entropy-alloy nanosheets with dilute Pt-Pt ensembles and intrinsic tensile strain (Mo1-PdPtNiCuZn) as efficient electrocatalysts for enhancing the methanol oxidation reaction catalysis. The as-made Mo1-PdPtNiCuZn delivers an extraordinary mass activity of 24.55 A mgPt-1 and 11.62 A mgPd+Pt-1, along with impressive long-term durability. The planted oxophilic Mo single atoms as promoters modify the electronic structure of isolated Pt sites in the high-entropy-alloy host, suppressing the formation of CO adsorbates and steering the reaction towards the formate pathway. Meanwhile, Mo promoters and tensile strain synergistically optimize the adsorption behaviour of intermediates to achieve a more energetically favourable pathway and minimize the methanol oxidation reaction barrier. This work advances the design of atomically precise catalytic sites by creating a new paradigm of single atom-tailored high-entropy alloys, opening an encouraging pathway to the design of CO-tolerance electrocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...