Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.914
Filter
1.
Cancer Lett ; : 216961, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823764

ABSTRACT

Extracellular vesicles are essential for intercellular communication and are involved in tumor progression. Inhibiting the direct release of extracellular vesicles seems to be an effective strategy in inhibiting tumor progression, but lacks of investigation. Here, we report a natural flavonoid compound, apigenin, could significantly inhibit the growth of hepatocellular carcinoma by preventing microvesicle secretion. Mechanistically, apigenin primarily targets the guanine nucleotide exchange factor ARHGEF1, inhibiting the activity of small G protein Cdc42, which is essential in regulating the release of microvesicles from tumor cells. In turn, this inhibits tumor angiogenesis related to VEGF90K transported on microvesicles, ultimately impeding tumor progression. Collectively, these findings highlight the therapeutic potential of apigenin and shed light on its anti-cancer mechanisms through inhibiting microvesicle biogenesis, providing a solid foundation for the refinement and practical application of apigenin.

2.
J Vis Exp ; (207)2024 May 20.
Article in English | MEDLINE | ID: mdl-38829108

ABSTRACT

Many sex-specific biomarkers have been recently revealed in Alzheimer's disease (AD); however, cerebral glial cells were rarely reported. This study analyzed 220,095 single-nuclei transcriptomes from the frontal cortex of thirty-three AD individuals in the GEO database. Sex-specific Differentially Expressed Genes (DEGs) were identified in glial cells, including 243 in astrocytes, 1,154 in microglia, and 572 in oligodendrocytes. Gene Ontology (GO) functional annotation analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed functional concentration in synaptic, neural, and hormone-related pathways. Protein-protein interaction network (PPI) identified MT3, CALM2, DLG2, KCND2, PAKACB, CAMK2D, and NLGN4Y in astrocytes, TREM2, FOS, APOE, APP, and NLGN4Y in microglia, and GRIN2A, ITPR2, GNAS, and NLGN4Y in oligodendrocytes as key genes. NLGN4Y was the only gene shared by the three glia and was identified as the biomarker for the gender specificity of AD. Gene-transcription factor (TF)-miRNA coregulatory network identified key regulators for NLGN4Y and its target TCMs. Ecklonia kurome Okam (Kunbu) and Herba Ephedrae (Mahuang) were identified, and the effects of the active ingredients on AD were displayed. Finally, enrichment analysis of Kunbu and Mahuang suggested that they might act as therapeutic candidates for gender specificity of AD.


Subject(s)
Alzheimer Disease , Neuroglia , Transcriptome , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Humans , Transcriptome/genetics , Female , Neuroglia/metabolism , Male , Biomarkers/metabolism , Biomarkers/analysis
3.
Plant Physiol Biochem ; 212: 108778, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38838570

ABSTRACT

The albino tea cultivar is one of the most important germplasms for key gene mining and high-quality tea producing. In order to elucidate the chlorophyll-deficient mechanism of albino cultivar 'Huangjinya' and its offspring, color difference, photosynthetic pigments and the relevant genes' expression of the tender shoots were comprehensively investigated in this study. Among the tested 16 offspring, 5 exhibited albino phenotype in spring and autumn, 3 showed albino phenotype in spring but normal green in autumn, while the rests were all normal green. The shoot of albino offspring had significantly higher lightness and/or yellowness than that of green ones, and possessed dramatically lower photosynthetic pigments and chlorophyll precursor protochlorophyllide (Pchlide), as well as higher chlorophyll a/chlorophyll b but lower chlorophylls/carotenoids in comparison with green ones. Among the tested genes involved in chlorophyll and carotenoid metabolism pathways, expression of the magnesium protoporphyrin IX monomethyl ester cyclase (CRD), 3,8-divinyl chlorophyllide 8-vinyl reductase (DVR), 5-aminolevulinate dehydratase 1 (HEMB1), 1-deoxy-D-xylulose 5-phosphate synthase 1 (DXS1) and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (ISPH) was remarkably down-regulated in shoots of the albino offspring. Color difference indices of the offspring were significantly correlated with the levels of photosynthetic pigments and Pchlide, and low level of chlorophylls in shoot of albino offspring was mainly due to conversion obstacle from magnesium protoporphyrin Ⅸ (Mg-Proto IX) to Pchlide which might be attributed to down-regulatory expression of CRD and DVR.

4.
Adv Funct Mater ; 34(8)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38828467

ABSTRACT

Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.

5.
Ecotoxicol Environ Saf ; 280: 116540, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38833982

ABSTRACT

The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 µM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 µM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.

6.
Thromb J ; 22(1): 47, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840142

ABSTRACT

OBJECTIVE: To compare the predictive efficacy of the PADUA and Caprini models for pulmonary embolism (PE) in gynecological inpatients, analyze the risk factors for PE, and validate whether both models can effectively predict mortality rates. METHODS: A total of 355 gynecological inpatients who underwent computed tomography pulmonary angiography (CTPA) were included in the retrospective analysis. The comparative assessment of the predictive capabilities for PE between the PADUA and Caprini was carried out using receiver operating characteristic (ROC) curves. Logistic regression analysis was used to identify risk factors associated with PE. Additionally, Kaplan-Meier survival analysis plots were generated to validate the predictive efficacy for mortality rates. RESULTS: Among 355 patients, the PADUA and Caprini demonstrated the area under the curve (AUC) values of 0.757 and 0.756, respectively. There was no statistically significant difference in the AUC between the two models (P = 0.9542). Multivariate logistic analysis revealed immobility (P < 0.001), history of venous thromboembolism (VTE) (P = 0.002), thrombophilia (P < 0.001), hormonal treatment (P = 0.022), and obesity (P = 0.019) as independent risk factors for PE. Kaplan-Meier survival analysis demonstrated the reliable predictive efficacy of both the Caprini (P = 0.00051) and PADUA (P = 0.00031) for mortality. ROC for the three- and six-month follow-ups suggested that the Caprini model exhibited superior predictive efficacy for mortality. CONCLUSIONS: The PADUA model can serve as a simple and effective tool for stratifying high-risk gynecological inpatients before undergoing CTPA. The Caprini model demonstrated superior predictive efficacy for mortality rates.

7.
Environ Res ; : 119349, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844029

ABSTRACT

Integrated aquaculture wastewater treatment systems (IAWTSs) are widely used in treating aquaculture wastewater with the aeration-microalgae unit serving as an important component. In this study, we artificially constructed an IAWTS and applied two aeration-microalgae methods: ordinary aeration or ozone nanobubbles (ONBs) with microalgae (Nannochloropsis oculata). The impact of N.oculata and ONBs on the removal performance of nutrients and the underlying micro-ecological mechanisms were investigated using 16S rRNA gene amplicon sequencing. The results demonstrated that the combined use of ONBs and N.oculata exhibited superior purification effects with 78.25%, 76.59% and 86.71% removal of CODMn, TN and TP. N.oculata played a pivotal role as the primary element in wastewater purification, while ONBs influenced nutrient dynamics by affecting both N.oculata and bacterial communities. N.oculata actively shaped bacterial communities, with a specific focus on nitrogen and phosphorus cycling in the micro-environment remodeled by ONBs. Rare bacterial communities displayed heightened activity in response to the changes in N.oculata, ONBs, and nutrient levels. These findings provide a novel approach to improve the technological processes the IAWTS, contributing to the advancement of sustainable aquaculture practices by offering valuable insights into wastewater purification efficiency and micro-ecological mechanisms.

8.
Arthrosc Tech ; 13(5): 102966, 2024 May.
Article in English | MEDLINE | ID: mdl-38835442

ABSTRACT

As an important structure for maintaining the hoop tension of the medial meniscus of the knee joint, the posterior root is receiving increasing attention. Medial meniscus posterior root tear is an important reason for the occurrence, development, and kinematics changes of knee osteoarthritis. It is necessary to repair the posterior root of meniscus for restoring joint kinematics and improving clinical efficacy. This Technical Note reports a medial meniscus posterior root tear repair technique using arthroscopic transtibial pullout repair (ATPR) combined with tibial condylar valgus osteotomy. The aim of this technique is to repair the posterior root of the medial meniscus while correcting the force line through osteotomy, opening the joint gap, improving the joint surface fit, providing a good mechanical environment for meniscus repair, thereby improving the healing rate of the posterior root of the meniscus and reducing the risk of retear. Although clinical evidence is currently limited, we believe that this technology may have more clinical advantages compared with ATPR alone or ATPR combined with high tibial osteotomy.

9.
World J Clin Oncol ; 15(5): 635-643, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38835847

ABSTRACT

BACKGROUND: Although treatment options for gastric cancer (GC) continue to advance, the overall prognosis for patients with GC remains poor. At present, the predictors of treatment efficacy remain controversial except for high microsatellite instability. AIM: To develop methods to identify groups of patients with GC who would benefit the most from receiving the combination of a programmed cell death protein 1 (PD-1) inhibitor and chemotherapy. METHODS: We acquired data from 63 patients with human epidermal growth factor receptor 2 (HER2)-negative GC with a histological diagnosis of GC at the Cancer Hospital, Chinese Academy of Medical Sciences between November 2020 and October 2022. All of the patients screened received a PD-1 inhibitor combined with chemotherapy as the first-line treatment. RESULTS: As of July 1, 2023, the objective response rate was 61.9%, and the disease control rate was 96.8%. The median progression-free survival (mPFS) for all patients was 6.3 months. The median overall survival was not achieved. Survival analysis showed that patients with a combined positive score (CPS) ≥ 1 exhibited an extended trend in progression-free survival (PFS) when compared to patients with a CPS of 0 after receiving a PD-1 inhibitor combined with oxaliplatin and tegafur as the first-line treatment. PFS exhibited a trend for prolongation as the expression level of HER2 increased. Based on PFS, we divided patients into two groups: A treatment group with excellent efficacy and a treatment group with poor efficacy. The mPFS of the excellent efficacy group was 8 months, with a mPFS of 9.1 months after excluding a cohort of patients who received interrupted therapy due to surgery. The mPFS was 4.5 months in patients in the group with poor efficacy who did not receive surgery. Using good/poor efficacy as the endpoint of our study, univariate analysis revealed that both CPS score (P = 0.004) and HER2 expression level (P = 0.015) were both factors that exerted significant influence on the efficacy of treatment the combination of a PD-1 inhibitor and chemotherapy in patients with advanced GC (AGC). Finally, multivariate analysis confirmed that CPS score was a significant influencing factor. CONCLUSION: CPS score and HER2 expression both impacted the efficacy of immunotherapy combined with chemotherapy in AGC patients who were non-positive for HER2.

10.
World J Gastrointest Surg ; 16(4): 1087-1096, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38690037

ABSTRACT

BACKGROUND: Acute liver failure (ALF) is a common cause of postoperative death in patients with hepatocellular carcinoma (HCC) and is a serious threat to patient safety. The neutrophil-to-lymphocyte ratio (NLR) is a common inflammatory indicator that is associated with the prognosis of various diseases, and the albumin-bilirubin score (ALBI) is used to evaluate liver function in liver cancer patients. Therefore, this study aimed to construct a predictive model for postoperative ALF in HCC tumor integrity resection (R0) based on the NLR and ALBI, providing a basis for clinicians to choose appropriate treatment plans. AIM: To construct an ALF prediction model after R0 surgery for HCC based on NLR and ALBI. METHODS: In total, 194 patients with HCC who visited The First People's Hospital of Lianyungang to receive R0 between May 2018 and May 2023 were enrolled and divided into the ALF and non-ALF groups. We compared differences in the NLR and ALBI between the two groups. The risk factors of ALF after R0 surgery for HCC were screened in the univariate analysis. Independent risk factors were analyzed by multifactorial logistic regression. We then constructed a prediction model of ALF after R0 surgery for HCC. A receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the value of the prediction model. RESULTS: Among 194 patients with HCC who met the standard inclusion criteria, 46 cases of ALF occurred after R0 (23.71%). There were significant differences in the NLR and ALBI between the two groups (P < 0.05). The univariate analysis showed that alpha-fetoprotein (AFP) and blood loss volume (BLV) were significantly higher in the ALF group compared with the non-ALF group (P < 0.05). The multifactorial analysis showed that NLR, ALBI, AFP, and BLV were independent risk factors for ALF after R0 surgery in HCC. The predictive efficacy of NLR, ALBI, AFP, and BLV in predicting the occurrence of ALT after R0 surgery for HCC was average [area under the curve (AUC)NLR = 0.767, AUCALBI = 0.755, AUCAFP = 0.599, AUCBLV = 0.718]. The prediction model for ALF after R0 surgery for HCC based on NLR and ALBI had a better predictive efficacy (AUC = 0.916). The calibration curve and actual curve were in good agreement. DCA showed a high net gain and that the model was safer compared to the curve in the extreme case over a wide range of thresholds. CONCLUSION: The prediction model based on NLR and ALBI can effectively predict the risk of developing ALF after HCC R0 surgery, providing a basis for clinical prevention of developing ALF after HCC R0 surgery.

11.
Acta Pharmacol Sin ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702500

ABSTRACT

It has been shown that prostaglandin (PG) E2 synthesized in the lateral parabrachial nucleus (LPBN) is involved in lipopolysaccharide-induced fever. But the neural mechanisms of how intra-LPBN PGE2 induces fever remain unclear. In this study, we investigated whether the LPBN-preoptic area (POA) pathway, the thermoafferent pathway for feed-forward thermoregulatory responses, mediates fever induced by intra-LPBN PGE2 in male rats. The core temperature (Tcore) was monitored using a temperature radiotelemetry transponder implanted in rat abdomen. We showed that microinjection of PGE2 (0.28 nmol) into the LPBN significantly enhanced the density of c-Fos-positive neurons in the median preoptic area (MnPO). The chemical lesioning of MnPO with ibotenate or selective genetic lesioning or inhibition of the LPBN-MnPO pathway significantly attenuated fever induced by intra-LPBN injection of PGE2. We demonstrated that EP3 receptor was a pivotal receptor for PGE2-induced fever, since microinjection of EP3 receptor agonist sulprostone (0.2 nmol) or EP3 receptor antagonist L-798106 (2 nmol) into the LPBN mimicked or weakened the pyrogenic action of LPBN PGE2, respectively, but this was not the case for EP4 and EP1 receptors. Whole-cell recording from acute LPBN slices revealed that the majority of MnPO-projecting neurons originating from the external lateral (el) and dorsal (d) LPBN were excited and inhibited, respectively, by PGE2 perfusion, initiating heat-gain and heat-loss mechanisms. The amplitude but not the frequency of spontaneous and miniature glutamatergic excitatory postsynaptic currents (sEPSCs and mEPSCs) in MnPO-projecting LPBel neurons increased after perfusion with PGE2; whereas the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) and the A-type potassium (IA) current density did not change. In MnPO-projecting LPBd neurons, neither sEPSCs nor sIPSCs responded to PGE2; however, the IA current density was significantly increased by PGE2 perfusion. These electrophysiological responses and the thermoeffector reactions to intra-LPBN PGE2 injection, including increased brown adipose tissue thermogenesis, shivering, and decreased heat dissipation, were all abolished by L-798106, and mimicked by sulprostone. These results suggest that the pyrogenic effects of intra-LPBN PGE2 are mediated by both the inhibition of the LPBd-POA pathway through the EP3 receptor-mediated activation of IA currents and the activation of the LPBel-POA pathway through the selective enhancement of glutamatergic synaptic transmission via EP3 receptors.

13.
Pest Manag Sci ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742692

ABSTRACT

BACKGROUND: Bombyx mori nuclear polyhedrosis virus (BmNPV), as a typical baculovirus, is the primary pathogen that infects the silkworm B. mori, a lepidopteran species. Owing to the high biological safety of BmNPV in infecting insects, it is commonly utilized as a biological insecticide for pest control. Apoptosis is important in the interaction between the host and pathogenic microorganisms. MicroRNAs (miRNAs) influence immune responses and promote stability of the immune system via apoptosis. Therefore, the study of apoptosis-related miRNA in silkworms during virus infection can not only provide support for standardizing the prevention and control of diseases and insect pests, but also reduce the economic losses to sericulture caused by the misuse of biological pesticides. RESULTS: Through transcriptome sequencing, we identified a miRNA, miR-31-5p, and demonstrated that it can inhibit apoptosis in silkworm cells and promote the proliferation of BmNPV in BmE-SWU1 cells. We identified a target gene of miR-31-5p, B. mori cytochrome P450 9e2 (BmCYP9e2), and demonstrated that it can promote apoptosis in silkworm cells and inhibit the proliferation of BmNPV. Moreover, we constructed transgenic silkworm strains with miR-31-5p knockout and confirmed that they can inhibit the proliferation of BmNPV. CONCLUSION: These data indicate that miR-31-5p may exert functions of inhibiting apoptosis and promoting virus proliferation by regulating BmCYP9e2. The findings demonstrate how miRNAs influence host cell apoptosis and how they are involved in the host immune system response to viruses, providing important insights into the applications of biological insecticides for pest control. © 2024 Society of Chemical Industry.

14.
Biosens Bioelectron ; 258: 116353, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38696966

ABSTRACT

Male infertility is a pervasive global reproductive challenge, primarily attributed to a decline in semen quality. Addressing this concern, there has been a growing focus on spermatozoa sorting in assisted reproductive technology. This study introduces a groundbreaking development in the form of a thermotaxis and rheotaxis microfluidic (TRMC) device designed for efficient motile spermatozoa sorting within a short 15-min timeframe. The TRMC device mimics the natural sperm sorting mechanism of the oviduct, selecting spermatozoa with superior motility and DNA integrity. The experimental outcomes demonstrate a remarkable enhancement in the percentage of progressive spermatozoa following sorting, soaring from 3.90% to an impressive 96.11% when subjected to a temperature decrease from 38 °C to 35 °C. Notably, sperm motility exhibited a substantial 69% improvement. The TRMC device exhibited a commendable recovery rate of 60.93%, surpassing current clinical requirements. Furthermore, the sorted spermatozoa displayed a notable reduction in the DNA fragmentation index to 6.94%, signifying a substantial 90% enhancement in DNA integrity. This remarkable advancement positions the TRMC device as highly suitable for applications in in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), offering a promising solution to male infertility challenges.


Subject(s)
Lab-On-A-Chip Devices , Sperm Motility , Spermatozoa , Male , Spermatozoa/physiology , Spermatozoa/cytology , Humans , Equipment Design , Infertility, Male , Biosensing Techniques/instrumentation , Cell Separation/instrumentation , DNA Fragmentation , Temperature
15.
Article in English | MEDLINE | ID: mdl-38767999

ABSTRACT

Even though the collaboration between traditional and neuromorphic event cameras brings prosperity to frame-event based vision applications, the performance is still confined by the resolution gap crossing two modalities in both spatial and temporal domains. This paper is devoted to bridging the gap by increasing the temporal resolution for images, i.e., motion deblurring, and the spatial resolution for events, i.e., event super-resolving, respectively. To this end, we introduce CrossZoom, a novel unified neural Network (CZ-Net) to jointly recover sharp latent sequences within the exposure period of a blurry input and the corresponding High-Resolution (HR) events. Specifically, we present a multi-scale blur-event fusion architecture that leverages the scale-variant properties and effectively fuses cross-modal information to achieve cross-enhancement. Attention-based adaptive enhancement and cross-interaction prediction modules are devised to alleviate the distortions inherent in Low-Resolution (LR) events and enhance the final results through the prior blur-event complementary information. Furthermore, we propose a new dataset containing HR sharp-blurry images and the corresponding HR-LR event streams to facilitate future research. Extensive qualitative and quantitative experiments on synthetic and real-world datasets demonstrate the effectiveness and robustness of the proposed method. Codes and datasets are released at https://bestrivenzc.github.io/CZ-Net/.

16.
Microbes Infect ; : 105350, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38723999

ABSTRACT

The widespread transmission of SARS-CoV-2 in humans poses a serious threat to public health security, and a growing number of studies have discovered that SARS-CoV-2 infection in wildlife and mutate over time. This article mainly reports the first systematic review and meta-analysis of the prevalence of SARS-CoV-2 in wildlife. The pooled prevalence of the 29 included articles was calculated by us using a random effects model (22.9%) with a high heterogeneity (I2 = 98.7%, p = 0.00). Subgroup analysis and univariate regression analysis found potential risk factors contributing to heterogeneity were country, wildlife species, sample type, longitude, and precipitation. In addition, the prevalence of SARS-CoV-2 in wildlife increased gradually over time. Consequently, it is necessary to comprehensively analyze the risk factors of SARS-CoV-2 infection in wildlife and develop effective control policies, as well as to monitor the mutation of SARS-CoV-2 in wildlife at all times to reduce the risk of SARS-CoV-2 transmission among different species.

17.
Pathogens ; 13(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38787263

ABSTRACT

Actinobacillus pleuropneumoniae (APP) is a major cause of lung infections in pigs. An experimental mouse has the edge over pigs pertaining to the ease of experimental operation, disease study and therapy, abundance of genetic resources, and cost. However, it is a challenge to introduce APP into a mouse lung due to the small respiratory tract of mice and bacterial host tropism. In this study, an effective airborne transmission of APP serovar 1 (APP1) was developed in mice for lung infection. Consequently, APP1 infected BALB/c mice and caused 60% death within three days of infection at the indicated condition. APP1 seemed to enter the lung and, in turn, spread to other organs of the mice over the first 5 days after infection. Accordingly, APP1 damaged the lung as evidenced by its morphological and histological examinations. Furthermore, ampicillin fully protected mice against APP1 as shown by their survival, clinical symptoms, body weight loss, APP1 count, and lung damages. Finally, the virulence of two extra APP strains, APP2 and APP5, in the model was compared based on the survival rate of mice. Collectively, this study successfully established a fast and reliable mouse model of APP which can benefit APP research and therapy. Such a model is a potentially useful model for airway bacterial infections.

18.
Phytomedicine ; 130: 155723, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38815405

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurological disorder. There is a considerable unmet medical need among those suffering from it. HYPOTHESIS AND PURPOSE: Given the link between type-2 diabetes mellitus (T2DM) and AD, hypoglycemic traditional Chinese medicine formulas (TCMFs) may be a treatment for AD. We investigated the possibility of identifying anti-AD medicines in hypoglycemic TCMFs and presented another option for the screening of AD medications. STUDY DESIGN AND METHODS: Paralysis of the transgenic Caenorhabditis elegans (C. elegans) strain CL4176 (caused by amyloid beta (Aß)1-42 aggregates) was used to evaluate the anti-AD effect. The toxicity and neurodegeneration induced by neuronal expression of Aß in the transgenic C. elegans strain CL2355 were determined using a 5-hydroxytryptamine (5-HT) assay. The transgenic Aß-expressing strain CL 2006 and transgenic tau-expressing strain BR5270 were used to explore the effect of TCMFs on protein expression in C. elegans using ELISAs. Then, network pharmacology was used to determine the mechanism of action. The Traditional Chinese Medicine Inheritance Support System platform was used to investigate prescription patterns, core drugs, and optimum combinations of hypoglycemic TCMFs for AD. RESULTS: Sixteen hypoglycemic TCMFs prolonged the PT50 (half paralysis time) of the CL4176 strain of C. elegans, reduced the percentage of worms paralyzed. The results of network pharmacology showed that prostaglandin-endoperoxide synthase 2 (PTGS2) and acetylcholine esterase (AChE) are main targets of hypoglycemic TCMFs. Enriched pathway analysis showed that the cholinergic receptor-related pathway was the core pathway of hypoglycemic TCMFs. According to the "four qi and five flavors" system of TCM theory, the main pharmacological qualities were "cold" and "sweet." Through the analysis by TCMISS, we found that Huangqi-Gegen drug pair as the significant Chinese herbs of hypoglycemic TCMFs. The Huangqi-Gegen pairing had the most robust therapeutic effect when delivered at a 2:1 (v/v) ratio. It reduced the paralysis caused by 5-HT, decreased protein expression of AChE and PTGS2, and reduced Aß deposition in the brain of the CL2006 strain of C. elegans. CONCLUSIONS: Huangqi-Gegen is a promising treatment of AD, and its mechanism may be induced by suppressing the protein production of AChE and PTGS2, reducing 5-HT intake, and then decreasing Aß deposition.

19.
Hu Li Za Zhi ; 71(3): 26-32, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38817134

ABSTRACT

Nursing information systems are becoming increasingly prevalent in our medical institutions. However, changes in the social environment and imbalances between the demands of caregivers and care recipients mean that current nursing information systems are inadequate in terms of quality and operational needs. This article was written to provide insights into opportunities to leverage technology to further promote care quality by applying a "data, information, knowledge, and wisdom" system development structure to develop intelligent technology products that equitably meet the needs of patients, caregivers, and nursing processes. Applied in clinical settings, these products should help satisfy patient needs and facilitate nursing work.


Subject(s)
Nursing Informatics , Humans
20.
Bioorg Chem ; 149: 107487, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38805910

ABSTRACT

The peel of Trichosanthes kirilowii Maxim, is considered one of the primary sources for Trichosanthis pericarpium in traditional Chinese medicine, exhibiting lipid-lowering properties. The impact on hyperlipidemia mice of the crude polysaccharide from the peel of T. Kirilowii (TRP) was investigated in this study. The findings revealed that TRP exhibited a significant improvement in hepatic lipid deposition. Moreover, it significantly decreased serum levels of TC, TG, and LDL-C, while concurrently increasing HDL-C. 16S rRNA amplicon sequencing technique revealed that TRP group exhibited an increased relative abundance of Actinobacteria, a down-regulated relative abundance of Ruminiclostridium, and an up-regulated relative abundance of Ileibacterium. Therefore, TRP might play a role in anti-hyperlipidemia through regulation of the intestinal milieu and enhancement of microbial equilibrium. Consequently, targeted fractionation of TRP resulted in the isolation of a homogeneous acidic polysaccharide termed TRP-1. The TRP-1 polysaccharide, with an average molecular weight of 1.00 × 104 Da, and was primarily composed of Rha, GlcA, GalA, Glc, Gal and Ara. TRP-1 possessed a backbone consisting of alternating connections between â†’ 6)-α-Galp-(1 â†’ 4)-α-Rhap-(1 â†’ 6)-α-Galp-(2 â†’ 6)-ß-Galp-(1 â†’ 6)-α-Galp-(2 â†’ 6)-ß-Galp-(1 â†’ units and branched chain containing â†’ 6)-α-Glcp-(1→, 2,4)-ß-Glcp-(1, and â†’ 4)-α-GlapA-(1→. Both TRP and TRP-1 exhibited significant disruption of cholesterol micelles, highlighting their potential as lipid-lowering agents that effectively inhibit cholesterol absorption pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...