Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Bioanalysis ; 15(14): 845-859, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37305945

ABSTRACT

Aim: Develop and validate a volumetric absorptive microsampling (VAMS)-based LC-MS/MS method to support the bioanalysis of amino acid and carboxylic acid biomarkers in mouse whole blood. Method: Mouse whole blood was collected using a 10 µl VAMS device. The analytes in VAMS were extracted and analyzed using an LC-MS/MS method. Results: The VAMS-based LC-MS/MS assay exhibited a linearity range of 10.0-10,000 ng/ml with acceptable precision and accuracy and consistent recovery. The analyte stability in mouse whole blood VAMS was shown for 7 days at ambient conditions and at -80°C, as well as with three freeze/thaw cycles. Conclusion: A simple and robust VAMS-based LC-MS/MS method was developed and further validated for simultaneous bioanalysis of nine biomarkers in mouse whole blood.


Subject(s)
Blood Specimen Collection , Tandem Mass Spectrometry , Animals , Mice , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Blood Specimen Collection/methods , Dried Blood Spot Testing/methods , Drug Discovery
2.
J Chromatogr A ; 1217(5): 667-75, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-20006340

ABSTRACT

A general approach for discovering novel catabolic metabolites from a parent biocompound was developed and validated on the metabolism of gamma-tocopherol in human A549 cell. The method is based on LC-MS analysis of in vitro stable isotope-labeled metabolites and assumes that a parent compound and its metabolites share a common functional group that can be derivatized by well-documented reagents. In this method, two equal aliquots of extracted metabolites are separately derivatized with isotope-coded (heavy) and non-isotope-coded (light) form of derivatizing reagent, mixed at 1:1 ratio and analyzed using LC-MS. The metabolites with common functional group are then easily recognized by determination of a chromatographically co-eluted pair of isotopomers (MS doublet peaks) with similar peak intensities and mass difference corresponding to the mass difference between heavy and light form of derivatization reagent. The feasibility of this approach was demonstrated and validated by the identification of products of gamma-tocopherol catabolism in human A549 cell culture media using N-methyl-nicotinic acid N-hydroxysuccinimide ester (C1-NANHS) and N-methyl-d3-nicotinic acid N-hydroxysuccinimide ester (C1-d3-NANHS) derivatizing reagent. Overall four gamma-tocopherol metabolites were identified including 9'-COOH, 11'-COOH, 13'-COOH and 13'-OH. In addition, the developed LC-MS method can also be used for the fast and sensitive quantitative analysis of gamma-tocopherol and other forms of vitamin E related compounds.


Subject(s)
Chromatography, Liquid/methods , Isotope Labeling/methods , Mass Spectrometry/methods , gamma-Tocopherol/analysis , Cell Line, Tumor/metabolism , Chromans/chemistry , Deuterium/chemistry , Deuterium/metabolism , Humans , Propionates/chemistry , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , gamma-Tocopherol/metabolism
3.
Electrophoresis ; 29(22): 4549-60, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19035407

ABSTRACT

A new approach to the selective comparative metabolite profiling of carboxylic acids in rat urine was established using CE-MS and a method for positively pre-charged and (2)H-coded derivatization. Novel derivatizing reagents, N-alkyl-4-aminomethyl-pyridinum iodide (alkyl = butyl, butyl-d9 or hexyl), containing quaternary amine and stable-isotope atoms (deuterium), were introduced for the derivatization of carboxylic acids. CE separation in positive polarity showed high reproducibility (0.99-1.32% RSD of migration time) and eliminated problems with capillary coating known in CE-MS anion analyses. Essentially complete ionization and increased hydrophobicity after the derivatization also enhanced MS detection sensitivity (e.g. formic acid was detected at 0.5 pg). Simultaneous derivatization of one sample using two structurally similar reagents, N-butyl-4-aminomethyl-pyridinum iodide (BAMP) and N-hexyl-4-aminomethyl-pyridinum iodide, provided additional information for recognizing a carboxylic acid in an unknown sample. Moreover, characteristic fragmentation acquired by online CE-MS/MS allowed for identification and categorization of carboxylic acids. Applying this method on rat urine, we found 59 ions matching the characteristic patterns of carboxylic acids. From these 59, 32 ions were positively identified and confirmed with standards. For comparative analysis, 24 standard carboxylic acids were derivatized by chemically identical but isotopically distinct BAMP and N-butyl-d9-4-aminomethyl-pyridinium iodide, and their derivatization limits and linearity ranges were determined. Comparative analysis was also performed on two individual urine samples derivatized with BAMP and N-butyl-d9-4-aminomethyl-pyridinium iodide. The metabolite profiling variation between these two samples was clearly visualized.


Subject(s)
Carboxylic Acids/urine , Electrophoresis, Capillary/methods , Animals , Carbodiimides/chemistry , Deuterium , Female , Metabolome , Pyridinium Compounds/chemical synthesis , Pyridinium Compounds/chemistry , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity , Solid Phase Extraction , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
4.
Anal Chem ; 80(24): 9508-16, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-19007244

ABSTRACT

Comprehensive analysis of intracellular metabolites is a critical component of elucidating cellular processes. Although the resolution and flexibility of reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) makes it one of the most powerful analytical tools for metabolite analysis, the structural diversity of even the simplest metabolome provides a formidable analytical challenge. Here we describe a robust RPLC-MS method for identification and quantification of a diverse group of metabolites ranging from sugars, phosphosugars, and carboxylic acids to phosphocarboxylics acids, nucleotides, and coenzymes. This method is based on in vitro derivatization with a (13)C-labeled tag that allows internal standard based quantification and enables separation of structural isomer pairs like glucose 6-phosphate and fructose 6-phosphate in a single chromatographic run. Calibration curves for individual metabolites showed linearity ranging over more than 2 orders of magnitude with correlation coefficients of R(2) > 0.9975. The detection limits at a signal-to-noise ratio of 3 were below 1.0 microM (20 pmol) for most compounds. Thirty common metabolites involved in glycolysis, the pentose phosphate pathway, and tricarboxylic acid cycle were identified and quantified from yeast lysate with a relative standard deviation of less than 10%.


Subject(s)
Carbon/metabolism , Chromatography, Liquid , Energy Metabolism , Metabolome , Pentose Phosphate Pathway , Spectrometry, Mass, Electrospray Ionization , Carbon Isotopes , Citric Acid Cycle , Fructosephosphates/metabolism , Glucose-6-Phosphate/metabolism , Glycolysis , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism
5.
Article in English | MEDLINE | ID: mdl-18595786

ABSTRACT

A fast and sensitive LC-ESI-MS method is described for the comparative quantification of 16 estrogen metabolites based on the derivatization of estrogens with a novel derivatizing reagent, N-methyl-nicotinic acid N-hydroxysuccinimide ester (C1-NA-NHS). The process introduces a quaternary amine to the analytes, making the analytes permanently charged regardless of the pH of the high-performance liquid chromatography (HPLC) mobile phase. This quaternization resulted in a highly efficient separation of 16 estrogen metabolites in 7 min at a detection level below 1 ng/mL. By using a deuterated derivatizing reagent (C1-d(3)-NA-NHS), a complete set of deuterated standards was utilized and used as internal standards in a comparative quantification and recovery study, demonstrating acceptable results over a wide concentration range. A pooled breast cancer serum sample was analyzed using the described method, and 15 estrogens were detected in the range of 80-530 pg/mL.


Subject(s)
Breast Neoplasms/blood , Chromatography, High Pressure Liquid/methods , Estradiol Congeners/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Estradiol Congeners/blood , Estradiol Congeners/chemistry , Humans , Isotope Labeling , Sensitivity and Specificity
6.
J Chromatogr A ; 1178(1-2): 24-32, 2008 Jan 18.
Article in English | MEDLINE | ID: mdl-18076893

ABSTRACT

Protein complexes, collectively referred to as the cellular interactome, appear to play a major role in cellular regulation. At present it is thought that the interactome could be composed of hundreds of protein assemblies. The objective of the work described here was to examine the prospect that chromatographic methods widely used in the preparative isolation of native proteins could be incorporated into global proteomics methods in such a way that the primary structure of protein complexes of sufficient stability to survive chromatography could be recognized along with their participation in protein complexes. Because wide differences in sizes are a unique feature of protein complexes, size-exclusion chromatography (SEC) was incorporated into all the fractionation strategies examined. Anion-exchange chromatography (AEC) and hydrophobic-interaction chromatography (HIC) were also examined because of the broad utility that these methods have shown in the preparation of proteins with native structure. Slightly more than a third of all proteins identified in yeast lysates were found to elute from SEC, AEC, and HIC columns with an apparent molecular weight much higher than that predicted from their parent gene. These results were interpreted to mean that these proteins were migrating through columns as components of protein complexes. Based on studies with multidimensional SEC-->RPLC (reversed-phase liquid chromatography), AEC-->SEC, and HIC-->SEC systems, it was concluded that recognition of proteins in complexes could be easily incorporated into multidimensional chromatographic methods for global proteomics when at least one of the fractionation dimensions included SEC of native proteins.


Subject(s)
Chromatography , Protein Interaction Mapping , Proteins/isolation & purification , Proteomics/methods , Saccharomyces cerevisiae Proteins/isolation & purification , Chromatography, Affinity , Chromatography, Gel , Chromatography, Ion Exchange , Hydrophobic and Hydrophilic Interactions , Proteins/analysis , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/analysis
7.
Electrophoresis ; 28(19): 3477-84, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17847133

ABSTRACT

In this work, a new generation UV-transparent polymer, fluorinated ethylenepropylene copolymer (FEP) exhibiting a low degree of crystallinity, extruded in dimensions similar to the most commonly used CE capillaries of approximately 80 mum id and about 360 mum od was investigated for its use as a CE capillary. FEP is transparent down to the low-UV region, and as fluorinated polymers in general are good electrical insulators and exhibit reasonable heat conductivity, it has considerable potential as a material for electrodriven analysis in capillary or microchip formats. The FEP capillary has been characterised with regard to some important aspects for its use as a CE capillary, including its profile of EOF versus pH, as well as procedures for manipulating EOF by coating the inner capillary wall with various semipermanent and dynamic layers. The FEP capillaries were tested and compared with fused-silica capillary for the separation of inorganic and small organic ions using conditions involving direct and indirect detection in the low-UV region. Finally, advantages of the use of the FEP capillary for simultaneous detection of a mixture containing nine inorganic cations and anions using indirect photometric detection with a movable light-emitting diode (LED) detector and a novel electrolyte are demonstrated.


Subject(s)
Electrophoresis, Capillary/instrumentation , Polytetrafluoroethylene/analogs & derivatives , Spectrum Analysis/methods , Coated Materials, Biocompatible/chemistry , Hot Temperature , Polyethylenes/chemistry , Polytetrafluoroethylene/chemistry , Sensitivity and Specificity , Silicon Dioxide/chemistry , Spectrophotometry, Ultraviolet/instrumentation , Spectrophotometry, Ultraviolet/methods , Ultraviolet Rays
8.
Anal Chem ; 79(14): 5150-7, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17492837

ABSTRACT

This paper focuses on the development of an enhanced LC/ESI-MS method for the identification and quantification of fatty acids through derivatization. Fatty acids were derivatized with 2-bromo-1-methylpyridinium iodide and 3-carbinol-1-methylpyridinium iodide, forming 3-acyloxymethyl-1-methylpyridinium iodide (AMMP). This process attaches a quaternary amine to analytes and enabled ESI-MS in the positive mode of ionization with common LC mobile phases. Moreover, detection sensitivity was generally 2500-fold higher than in the negative mode of ionization used with underivatized fatty acids. The limits of detection were roughly 1.0-4.0 nM (or 10 pg/injection) for standard fatty acids from C10 to C24 and spanned approximately 2 orders of magnitude in linearity. AMMP derivatives had unique tandem mass spectra characterized by common ions at m/z 107.0, 124.0, and 178.0. Individual fatty acids also had unique fingerprint regions that allowed identification of their carbon skeleton number, number of double bonds, and double bond position. The derivatization method also allowed coding of analytes as a means of recognizing derivatives and enhancing quantification. 2H-Coding was achieved through derivatization with deuterated 3-carbinol-1-methyl-d3-pyridinium iodide. The 2H-coded derivatization reagent, 3-acyloxymethyl-1-methyl-d3-pyridinium iodide, was used in two ways. One was to differentially label equal fractions of a sample such that after being recombined and analyzed by ESI-MS all fatty acids appeared as doublet clusters of ions separated by roughly 3 amu. This greatly facilitated identification of fatty acids in complex mixtures. Another use of stable isotope coding was in comparative quantification. Control and experimental samples were differentially labeled with nondeuterated and deuterated isotopomers of CPM, respectively. After mixing the two samples, they were analyzed by ESI-MS. The abundance of a fatty acid in an experimental sample relative to the control was established by the isotope ratio of the isotopomeric fatty acids. Absolute quantification was achieved by adding differentially labeled fatty acid standards to experimental samples containing unknown quantities of fatty acids. Utility of the method was examined in the analysis of human serum samples.


Subject(s)
Chromatography, High Pressure Liquid/methods , Fatty Acids/analysis , Isotope Labeling/methods , Spectrometry, Mass, Electrospray Ionization/methods , Fatty Acids/blood , Fatty Acids/chemistry , Humans , Pyridinium Compounds/chemistry , Sensitivity and Specificity
9.
Anal Chem ; 78(13): 4702-8, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16808485

ABSTRACT

A new strategy for amino acid analysis is reported involving derivatization with an N-hydroxysuccinimide ester of N-alkylnicotinic acid (Cn-NA-NHS) followed by reversed-phase chromatography and electrospray ionization mass spectrometry (RPC-MS). Detection sensitivity increased as the N-alkyl chain length of the nicotinic acid derivatizing agent was increased from 1 to 4. N-Acylation of amino acids with the Cn-NA-NHS reagents in water produced a stable product in roughly 1 min using a 4-fold molar excess of derivatizing agent in 0.1 M sodium borate buffer at pH values ranging from 8.5 to 10. Some O-acylation of tyrosine was also observed, but the product hydrolyzed within a few minutes at pH 10. The cystine product also degraded slowly over the course of a few days from reduction of the disulfide bond to form cysteine. The retention time of Cn-NA derivatized amino acids was lengthened in reversed-phase chromatography to the extent that polar amino acids were retained beyond the solvent peak, particularly in the cases of the C3-NA and C4-NA derivatives. Complete resolution of 18 amino acids was achieved in 28 min using the C4-NA-NHS reagent. Compared to N-acylation with benzoic acid, derivatization with C4-NA-NHS increased MS detection sensitivity 6-80-fold. This was attributed to the surfactant properties of the Cn-NA-NHS reagents. The quaternary amine increased the charge on amino acid conjugates while the presence of an adjacent alkyl chain further increased ionization efficiency by apparently enhancing amino acid migration to the surface of electrospray droplets. Further modification of the Cn-NA-NHS reagents with deuterium was used to prepare coded sets of derivatizing agents. These coding agents were used to differentially code samples and after mixing carry out comparative concentration measurements between samples using extracted ion chromatograms to estimate relative peak areas of derivatized amino acids.


Subject(s)
Amino Acids/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Hydrogen-Ion Concentration , Sensitivity and Specificity , Surface-Active Agents/chemistry
10.
Anal Chem ; 77(14): 4489-94, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16013864

ABSTRACT

A novel CE-based noncompetitive immunoassay for prion protein (PrP) was established. Fluorescein isothiocyanate (FITC)-labeled protein A (FITC-PrA) was used as a fluorescent probe to tag monoclonal antibody through noncovalent binding of FITC-PrA to the Fc region of the antibody. The FITC-PrA-Ab was incubated with the analyte, prion protein, under optimized condition, forming the immunocomplex FITC-PrA-Ab-PrP. The complex was separated and analyzed by capillary zone electrophoresis. The addition of carboxymethyl-beta-cyclodextrin in the running buffer as dynamical coating reagent improved the reproducibility and the resolution. The complex was isolated in less than 1 min with theoretical plates of 3.8 x 10(4). Relative standard deviations of peak height and migration time for the complex were 3.46 and 1.48%, respectively. A linear relationship was established for the bovine recombinant prion protein (rPrP) concentration in the range from 0.2 to 2.0 mug/mL and the peak height. The correlation factor was r2 = 0.9969. The estimated detection limit for rPrP was approximately 6 ng/mL, which is 3 times the signal-to-noise ratio. The method was successfully applied for testing blood samples from scrapie-infected sheep.


Subject(s)
Electrophoresis, Capillary/methods , Fluorescein/chemistry , Prions/chemistry , Staphylococcal Protein A/chemistry , Affinity Labels , Animals , Antibody Affinity , Binding Sites, Antibody , Fluorescence , Hydrogen-Ion Concentration , Recombinant Proteins , Sheep/blood
11.
Electrophoresis ; 26(9): 1751-9, 2005 May.
Article in English | MEDLINE | ID: mdl-15815999

ABSTRACT

The development of capillary electrophoresis (CE)-based competitive immunoassay for prion protein (PrP) using carboxymethyl beta-cyclodextrin (CM-beta-CD) as a buffer additive is described here. The assay was based on the competitive binding of PrP and a fluorescein-labeled peptide from the prion protein with a limiting amount of specific antibody. The amount of both free and fluorescein-labeled peptide bound to antibody (immunocomplex) were determined by CE with laser-induced fluorescence detection. In the presence of PrP, the peak height ratio of the immunocomplex and the free peptide was altered compared to the control. These changes were directly proportional to the amount of PrP present. The fluorescently labeled peptide spanning amino acid positions 140-158 of the PrP and its corresponding monoclonal antibody is reported here. The reaction times of the antibody with either the peptide or the recombinant PrP was less than 1 min and is a large improvement over the 16-18 h required to achieve equilibrium for polyclonal antibodies. CM-beta-CD was explored as a buffer additive to suppress analyte adsorption and enhance separation selectivity in the CE analysis. A fast (1.1 min), selective (resolution 4.7), and reproducible (relative standard deviations of migration time for free and bound fluorescein isothiocyanate (FITC)-peptide 0.56% and 0.64%, respectively) separation was obtained with 0.6% CM-beta-CD in 25 mM N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid (TAPS) at pH 8.8. The concentration detection limit of the assay for recombinant PrP was determined to be 80 ng/mL (or mass detection limit 1 pg). When blood samples from scrapie-infected sheep and from normal sheep were tested, the results of the blood assay were consistent with scrapie status of the sheep as determined post mortem by Western blot analysis. Development of this assay will lead to a potentially robust, rapid, and specific preclinical diagnosis for transmissible spongiform encephalopathies (TSEs) in animals and humans.


Subject(s)
Cyclodextrins/chemistry , Electrophoresis, Capillary/veterinary , Immunoassay/veterinary , Prions/blood , Scrapie/diagnosis , Animals , Antibodies, Monoclonal/immunology , Electrophoresis, Capillary/methods , Fluorescein-5-isothiocyanate/chemistry , Fluorescent Dyes , Immunoassay/methods , Peptides/chemistry , Peptides/immunology , Prions/immunology , Prions/isolation & purification , Sheep/blood
12.
J Immunoassay Immunochem ; 26(1): 1-12, 2005.
Article in English | MEDLINE | ID: mdl-15754800

ABSTRACT

In this study, we compared the sensitivity of two different detection methods for quantitative polymerase chain reaction (PCR). Various amounts of a 75 mer single-stranded deoxyribonucleic acid (DNA) fragment, which can be used as a DNA label for the immuno-PCR (iPCR) assays, were amplified by PCR. The amount of amplified DNA fragments was determined by the fluorescence (FL) of SYBR Green dye that specifically interacts with double-stranded DNA fragments. In the first selected detection method, real-time PCR, FL measurements were carried out at each thermal cycle, as the DNA was being amplified by PCR. This was achieved using the Applied Biosystems (ABI) Prism 7000 Sequence Detection System and its standard protocol. In the second detection method, referred to as end-point detection, after the PCR amplification was completed, off-line FL measurements were subsequently carried out using a conventional plate reader. In order to achieve the lowest limit of detection (LOD) from the off-line measurement, we have optimized a wide variety of parameters. Our data have indicated the LOD of real-time PCR method was approximately three orders of magnitude lower than the end-point measurement method, with a linear range spanning six orders of magnitude; 10 fmol to 10 zmol of PCR template. The lower LOD of the real-time PCR method could be partly due to the ability to maximize the number of thermal cycles that could be carried out in PCR, without increasing the non-specific amplification of any contaminating DNA. The results of this study can be applied to the development of ultra-sensitive iPCR assays for various disease markers.


Subject(s)
Fluorometry/methods , Polymerase Chain Reaction/methods , Calibration , Fluorescent Dyes/analysis , Fluorometry/instrumentation , Polymerase Chain Reaction/instrumentation , Sensitivity and Specificity , Time Factors
13.
J Chromatogr A ; 1039(1-2): 193-9, 2004 Jun 11.
Article in English | MEDLINE | ID: mdl-15250423

ABSTRACT

Poly(tetrafluoroethylene) (PTFE) is a material widely known for its inertness and excellent electrical properties. It is also transparent in the UV region and has a reasonable thermal conductivity. These properties make PTFE a suitable material for the separation capillary in capillary electrophoresis. Differences in the chemistry of the capillary wall compared to fused silica (FS) can make PTFE an interesting alternative to FS for some special applications. In this work, properties of a commercial PTFE capillary of approx. 100 microm i.d. were investigated, including the dependence of electroosmotic flow (EOF) on pH for unmodified and dynamically modified PTFE, optical properties, and practical aspects of use. The main problems encountered for the particular PTFE capillary used in this study were that it was mechanically too soft for routine usage and the crystallinity of the PTFE caused light scattering, leading to high background absorbance values in the low UV region. The profile of the EOF versus pH for bare PTFE surprisingly showed significantly negative EOF values at pH < 4.2, with an EOF of -30 x 10(-9) m2 V(-1) s(-1) being observed at pH 2.5. This is likely to be caused by either impurities or additives of basic character in the PTFE, so that after their protonation at acidic pH they establish a positive charge on the capillary wall and create a negative EOF. A stable cationic semi-permanent coating of poly(diallyldimethylammonium chloride) (PDDAC) could be established on the PTFE capillary and led to very similar magnitudes of EOF to those observed with FS. A hexadecanesulfonate coating produced a cathodic EOF of extremely high magnitude ranging between +90 and +110 x 10(-9) m2 s(-1) V(-1), which are values high enough to allow counter-EOF separation of high mobility inorganic anions. In addition, pH-independent micellar electrokinetic capillary chromatography (MEKC) separations could be easily realised due to hydrophobic adsorption of sodium dodecylsulfate (used to form the micelles) on the wall of the PTFE capillary. The use of polymers that would be mechanically more robust and optically transparent in the low-UV region should make such CE capillaries an interesting alternative to fused silica.


Subject(s)
Electrophoresis, Capillary/instrumentation , Polytetrafluoroethylene , Electrodes , Hot Temperature , Hydrogen-Ion Concentration , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...