Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Environ Res ; 252(Pt 4): 119092, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729407

ABSTRACT

With the acceleration of industrialization, Cd pollution has emerged as a major threat to soil ecosystem health and food safety. Hyperaccumulating plants like Sedum alfredii Hance are considered to be used as part of an effective strategy for the ecological remediation of Cd polluted soils. This study delved deeply into the physiological, transcriptomic, and metabolomic responses of S. alfredii under cadmium (Cd) stress when treated with exogenous salicylic acid (SA). We found that SA notably enhanced the growth of S. alfredii and thereby increased absorption and accumulation of Cd, effectively alleviating the oxidative stress caused by Cd through upregulation of the antioxidant system. Transcriptomic and metabolomic data further unveiled the influence of SA on photosynthesis, antioxidant defensive mechanisms, and metal absorption enrichment pathways. Notably, the interactions between SA and other plant hormones, especially IAA and JA, played a central role in these processes. These findings offer us a comprehensive perspective on understanding how to enhance the growth and heavy metal absorption capabilities of hyperaccumulator plants by regulating plant hormones, providing invaluable strategies for future environmental remediation efforts.

2.
Chemosphere ; 360: 142417, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797210

ABSTRACT

Silicon (Si) effectively promote the yield of many crops, mainly due to its ability to enhance plants resistance to stress. However, how Si helps hyperaccumulators to extract Cadmium (Cd) from soil has remained unclear. In this study, Sedum alfredii Hance (S. alfredii) was used as material to study how exogenous Si affected biomass, Cd accumulation, antioxidation, cell ultrastructure, subcellular distribution and changes in gene expression after Cd exposure. The study has shown that as Si concentration increases (1, 2 mM), the shoot biomass of plants increased by 33.1%-63.6%, the Cd accumulation increased by 31.9%-96.6%, and the chlorophyll, carotenoid content, photosynthetic gas exchange parameters significantly increased. Si reduced Pro and MDA, promoted the concentrations of SOD, CAT and POD to reduce antioxidant stress damage. In addition, Si promoted GSH and PC to chelate Cd in vacuoles, repaired damaged cell ultrastructure, improved the fixation of Cd and cell wall (especially in pectin), and reduced the toxic effects of Cd. Transcriptome analysis found that genes encoding Cd detoxification, Cd absorption and transport were up-regulated by Si supplying, including photosynthetic pathways (PSB, LHCB, PSA), antioxidant defense systems (CAT, APX, CSD, RBOH), cell wall biosynthesis such as pectinesterase (PME), chelation (GST, MT, NAS, GR), Cd absorption (Nramp3, Nramp5, ZNT) and Cd transport (HMA, PCR). Our result revealed the tentative mechanism of Si promotes Cd accumulation and enhances Cd tolerance in S. alfredii, and thereby provides a solid theoretical support for the practical use of Si fertilizer in phytoextraction.

3.
Vet Res ; 55(1): 58, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715081

ABSTRACT

The haemagglutinin-neuraminidase (HN) protein, a vital membrane glycoprotein, plays a pivotal role in the pathogenesis of Newcastle disease virus (NDV). Previously, we demonstrated that a mutation in the HN protein is essential for the enhanced virulence of JS/7/05/Ch, a velogenic variant NDV strain originating from the mesogenic vaccine strain Mukteswar. Here, we explored the effects of the HN protein during viral infection in vitro using three viruses: JS/7/05/Ch, Mukteswar, and an HN-replacement chimeric NDV, JS/MukHN. Through microscopic observation, CCK-8, and LDH release assays, we demonstrated that compared with Mukteswar and JS/MukHN, JS/7/05/Ch intensified the cellular damage and mortality attributed to the mutant HN protein. Furthermore, JS/7/05/Ch induced greater levels of apoptosis, as evidenced by the activation of caspase-3/8/9. Moreover, JS/7/05/Ch promoted autophagy, leading to increased autophagosome formation and autophagic flux. Subsequent pharmacological experiments revealed that inhibition of apoptosis and autophagy significantly impacted virus replication and cell viability in the JS/7/05/Ch-infected group, whereas less significant effects were observed in the other two infected groups. Notably, the mutant HN protein enhanced JS/7/05/Ch-induced apoptosis and autophagy by suppressing NF-κB activation, while it mitigated the effects of NF-κB on NDV infection. Overall, our study offers novel insights into the mechanisms underlying the increased virulence of NDV and serves as a reference for the development of vaccines.


Subject(s)
Apoptosis , HN Protein , NF-kappa B , Newcastle Disease , Newcastle disease virus , Newcastle disease virus/physiology , Newcastle disease virus/genetics , Newcastle disease virus/pathogenicity , Animals , HN Protein/genetics , HN Protein/metabolism , Newcastle Disease/virology , NF-kappa B/metabolism , Poultry Diseases/virology , Chickens , Chick Embryo
4.
Colloids Surf B Biointerfaces ; 238: 113921, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631280

ABSTRACT

Tumor microenvironment (TME)-responsive size-changeable and biodegradable nanoplatforms for multimodal therapy possess huge advantages in anti-tumor therapy. Hence, we developed a hyaluronic acid (HA) modified CuS/MnO2 nanosheets (HCMNs) as a multifunctional nanoplatform for synergistic chemodynamic therapy (CDT)/photothermal therapy (PTT)/photodynamic therapy (PDT). The prepared HCMNs exhibited significant NIR light absorption and photothermal conversion efficiency because of the densely deposited ultra-small sized CuS nanoparticles on the surface of MnO2 nanosheet. They could precisely target the tumor cells and rapidly decomposed into small sized nanostructures in the TME, and then efficiently promote intracellular ROS generation through a series of cascade reactions. Moreover, the local temperature elevation induced by photothermal effect also promote the PDT based on CuS nanoparticles and the Fenton-like reaction of Mn2+, thereby enhancing the therapeutic efficiency. Furthermore, the T1-weighted magnetic resonance (MR) imaging was significantly enhanced by the abundant Mn2+ ions from the decomposition process of HCMNs. In addition, the CDT/PTT/PDT synergistic therapy using a single NIR light source exhibited considerable anti-tumor effect via in vitro cell test. Therefore, the developed HCMNs will provide great potential for MR imaging and multimodal synergistic cancer therapy.


Subject(s)
Copper , Hyaluronic Acid , Magnetic Resonance Imaging , Manganese Compounds , Oxides , Photochemotherapy , Tumor Microenvironment , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Tumor Microenvironment/drug effects , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Oxides/chemistry , Oxides/pharmacology , Humans , Copper/chemistry , Copper/pharmacology , Particle Size , Nanostructures/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Phototherapy , Nanoparticles/chemistry , Cell Survival/drug effects , Surface Properties , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Drug Screening Assays, Antitumor , Animals
6.
J Hazard Mater ; 470: 134154, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38581871

ABSTRACT

In this work, a multiplexed colorimetric strategy was initiated for simultaneous and fast visualization of dyes using low-cost and easy-to-prepare indicator papers as sorbents. Response surface methodology (RSM) was employed to model statistically and optimize the process variables for dyes extraction and colorimetric assays. Multiplexed colorimetry was realized by virtue of synchronous color alignments from different dimensions of multiple dyes co-stained colorimetric cards under RSM-optimized conditions, and smartphone-based image analysis was subsequently performed from different modes to double-check the credibility of colorimetric assays. As concept-to-proof trials, simultaneous visualization of dyes in both beverages and simulated dye effluents was experimentally proved with results highly matched to HPLC or spiked amounts at RSM-predicted staining time as short as 50 s ∼3 min, giving LODs as low as 0.97 ± 0.22/0.18 ± 0.08 µg/mL (tartrazine/brilliant blue) for multiplexed colorimetry, which much lower than those obtained by single colorimetry. Since this is the first case to propose such a RSM-guided multiplexed colorimetric concept, it will provide a reference for engineering of other all-in-one devices which can realize synchronous visualization applications within limited experimental steps.


Subject(s)
Colorimetry , Coloring Agents , Smartphone , Colorimetry/methods , Coloring Agents/chemistry , Coloring Agents/analysis , Food Contamination/analysis , Tartrazine/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Image Processing, Computer-Assisted/methods , Benzenesulfonates/chemistry , Beverages/analysis
7.
Nutr Metab Cardiovasc Dis ; 34(6): 1508-1517, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503620

ABSTRACT

BACKGROUND AND AIMS: Uric acid (UA) and C-reactive protein (CRP) may interact synergistically to accelerate the initiation and progression of cardiovascular disease (CVD). This study investigated the effects of a combination of high UA and high CRP on the risks of CVD. METHODS AND RESULTS: A total of 90,270 participants recruited from the Kailuan study were included, who were divided into four groups according to the presence/absence of hyperuricemia and inflammation. Cox regression was applied to evaluate the hazard ratios (HRs) and 95% confidence intervals (95% CIs) of CVD. C-statistics, net classification index (NRI), and integrated discrimination improvement (IDI) were used to compare the incremental predictive of UA, CRP, and their combined effects on CVD. Mediation analysis was to explore the impact of CRP on the association between UA and CVD. Over a median follow-up of 14.95 years, we identified 11398 incident CVD cases. Compared to the low UA/low CRP group, the high UA/low CRP, low UA/high CRP and high UA/high CRP groups showed progressively higher risks of CVD, HR (95% CI): 1.18(1.10-1.27), 1.27(1.21-1.33) and 1.50 (1.33-1.69), respectively. The incorporation of UA and CRP into the traditional China-PAR model led to improvement in the C-statistic, NRI, and IDI, and was better than incorporation of either UA or CRP alone. Mediation analysis showed that CRP mediated the association between UA and CVD, accounting for 11.57% of the total effects. CONCLUSIONS: High UA/high CRP is associated with increased risks of CVD. Incorporation of both UA and CRP provided additional value for risk stratification.


Subject(s)
Biomarkers , C-Reactive Protein , Cardiovascular Diseases , Heart Disease Risk Factors , Hyperuricemia , Inflammation Mediators , Up-Regulation , Uric Acid , Humans , C-Reactive Protein/analysis , Uric Acid/blood , Male , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Middle Aged , Female , Prospective Studies , Biomarkers/blood , China/epidemiology , Risk Assessment , Hyperuricemia/blood , Hyperuricemia/epidemiology , Hyperuricemia/diagnosis , Time Factors , Adult , Incidence , Inflammation Mediators/blood , Prognosis , Aged , Mediation Analysis
8.
Bioresour Technol ; 397: 130466, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373501

ABSTRACT

Forming and maintaining stable aerobic granular sludge (AGS) at a low superficial gas velocity (SGV) is challenging, particularly with polymeric substrates. This study cultivated filamentous aerobic granular sludge (FAGS) with filamentous Kouleothrix (Type 1851) at low SGV (0.15 cm/s) utilizing mixed acetate-soluble starch. Within approximately 260 days, notable increases in the relative abundance of Kouleothrix (from 4 % to 10 %) and Ca. Competibacter (from 1 % to 26 %) were observed through 16S rRNA gene analysis. Metagenomic analysis revealed increased expression of functional genes involved in volatile fatty acid (VFA) production (e.g., ackA and pta) and polyhydroxyalkanoate synthesis (e.g., phbB and phbC). Kouleothrix acted as a skeleton for bacterial attachment and was the key fermenting bacteria promoting granulation and maintaining granule stability. This study provides insight into the formation of FAGS with low-energy and non-VFA substrates.


Subject(s)
Bioreactors , Sewage , Sewage/microbiology , RNA, Ribosomal, 16S , Bioreactors/microbiology , Bacteria/metabolism , Aerobiosis , Polymers/metabolism , Waste Disposal, Fluid
9.
Chemosphere ; 352: 141349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307335

ABSTRACT

The adsorption characteristics and mechanism of Cd2+ on microbial inoculant (MI) mainly composed of Bacillus subtilis, Bacillus thuringiensis and Bacillus amyloliquefaciens, and its potential for remediation Cd polluted soils through batch adsorption and soil incubation experiments. It was found that the Freundlich isotherm model and the pseudo-second-order kinetics were more in line with the adsorption processes of Cd2+. The maximum adsorption capacity predicted by Langmuir isotherm model suggested that of MI was 57.38 mg g-1. Scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) images exhibited the surface structure of MI was damaged to varying degrees after adsorption, and Cd element was distributed on the surface of MI through ion exchange. X-ray diffraction (XRD) results showed that CdCO3 was formed on the surface of MI. Moreover, the functional groups (-OH, C-H, and -NH) involved in the adsorption of Cd2+ through fourier transform infrared spectroscopy (FTIR). After applying MI to Cd-contaminated soil, it was found that soil pH, conductivity (EC) and soil organic matter (SOM) increased by 0.84 %-2.43 %, 31.6 %-241.48 %, and 8.11 %-24.1 %, respectively, when compared with the control treatments. The content of DTPA-Cd in the soils was significantly (P < 0.05) reduced by 15.48 %-29.68 % in contrast with CK, and the Cd speciation was transformed into a more stable residual fraction. The activities of urease, phosphatase and sucrose were increased by 3.5 %-45.18 %, 57.00 %-134.18 % and 52.51 %-70.52 %, respectively, compared with CK. Therefore, MI could be used as an ecofriendly and sustainable material for bioremediation of Cd-contaminated soils.


Subject(s)
Agricultural Inoculants , Cadmium , Cadmium/analysis , Adsorption , Farms , Kinetics , Soil/chemistry , Spectroscopy, Fourier Transform Infrared , Hydrogen-Ion Concentration
10.
Eur Stroke J ; 9(2): 432-440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38291622

ABSTRACT

INTRODUCTIONS: Venous outflow (VO) is emerging as a marker of microvascular integrity in acute ischemic stroke. Using hemorrhagic transformation (HT) and infarct growth as mediators, we tested whether a favorable VO profile benefited functional outcome by reducing consequences of microvascular dysfunction. PATIENTS AND METHODS: Patients receiving thrombectomy in three comprehensive stroke centers due to acute anterior circulation occlusion were included. VO was assessed semi-quantitatively by the opacification of ipsilateral vein of Labbé, Trolard and superficial middle cerebral vein. HT was graded on follow-up CT. Infarct growth volume (IGV) was the difference of final infarct volume and baseline core volume. The association of VO and functional independence (90-day modified Rankin Scale ⩽ 2) was examined by logistic regression. Mediation analysis was performed among VO, HT or IGV, and functional outcome in patients with or without recanalization, respectively. RESULTS: In 242 patients analyzed, VO was strongly correlated with functional independence and VO ⩾ 4 was defined favorable. In 175 patients recanalized, favorable VO was associated with a reduced risk of HT (OR = 0.82, 95% CI 0.71-0.95, p = 0.008), which accounted for 13.1% of the association between VO and favorable outcome. In 67 patients without recanalization, favorable VO was associated with decreased IGV (ß = -0.07, 95% CI -0.11 to -0.02, p = 0.007). The association of favorable VO and functional independence was no longer significant (aOR = 4.84, 95% CI 0.87-38.87, p = 0.089) after including IGV in the model, suggesting a complete mediation. DISCUSSION AND CONCLUSION: In patients with acute anterior large vessel occlusion, the clinical benefit of VO may be mediated through reduced microvascular dysfunction.


Subject(s)
Ischemic Stroke , Humans , Male , Female , Ischemic Stroke/physiopathology , Ischemic Stroke/therapy , Aged , Middle Aged , Thrombectomy/methods , Cerebral Veins/physiopathology , Cerebral Veins/diagnostic imaging , Aged, 80 and over , Treatment Outcome , Brain Ischemia/physiopathology , Brain Ischemia/diagnostic imaging , Microvessels/physiopathology , Microvessels/diagnostic imaging
11.
Sci Total Environ ; 914: 169939, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38211868

ABSTRACT

Soil cadmium (Cd) pollution is escalating, necessitating effective remediation strategies. This study investigated the effects of exogenous jasmonic acid (JA) on Sedum alfredii Hance under Cd stress, aiming to enhance its phytoextraction efficiency. Initially, experiments were conducted to assess the impact of various concentrations of JA added to environments with Cd concentrations of 100, 300, and 500 µmol/L. The results determined that a concentration of 1 µmol/L JA was optimal. This concentration effectively mitigated the level of ROS products by enhancing the activity of antioxidant enzymes. Additionally, JA fostered Cd absorption and accumulation, while markedly improving plant biomass and photosynthetic performance. In further experiments, treatment with 1 µmol/L JA under 300 µmol/L Cd stress was performed and transcriptomic analysis unveiled a series of differentially expressed genes (DEGs) instrumental in the JA-mediated Cd stress response. These DEGs encompass not only pathways of JA biosynthesis and signaling but also genes encoding functions that influence antioxidant systems and photosynthesis, alongside genes pertinent to cell wall synthesis, and metal chelation and transport. This study highlights that JA treatment significantly enhances S. alfredii's Cd tolerance and accumulation, offering a promising strategy for plant remediation and deepening our understanding of plant responses to heavy metal stress.


Subject(s)
Cyclopentanes , Oxylipins , Sedum , Soil Pollutants , Cadmium/analysis , Sedum/metabolism , Antioxidants/metabolism , Gene Expression Profiling , Soil Pollutants/analysis , Biodegradation, Environmental , Plant Roots/metabolism
12.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3722-3735, 2024 May.
Article in English | MEDLINE | ID: mdl-38163315

ABSTRACT

We propose a novel generalization of constrained Markov decision processes (CMDPs) that we call the semi-infinitely constrained Markov decision process (SICMDP). Particularly, we consider a continuum of constraints instead of a finite number of constraints as in the case of ordinary CMDPs. We also devise two reinforcement learning algorithms for SICMDPs that we refer to as SI-CMBRL and SI-CPO. SI-CMBRL is a model-based reinforcement learning algorithm. Given an estimate of the transition model, we first transform the reinforcement learning problem into a linear semi-infinitely programming (LSIP) problem and then use the dual exchange method in the LSIP literature to solve it. SI-CPO is a policy optimization algorithm. Borrowing ideas from the cooperative stochastic approximation approach, we make alternative updates to the policy parameters to maximize the reward or minimize the cost. To the best of our knowledge, we are the first to apply tools from semi-infinitely programming (SIP) to solve constrained reinforcement learning problems. We present theoretical analysis for SI-CMBRL and SI-CPO, identifying their iteration complexity and sample complexity. We also conduct extensive numerical experiments to illustrate the SICMDP model and demonstrate that our proposed algorithms are able to solve complex control tasks leveraging modern deep reinforcement learning techniques.

13.
Sci Total Environ ; 912: 169007, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38040363

ABSTRACT

Excessive fertilization is acknowledged as a significant driver of heightened environmental pollution and soil acidification in agricultural production. Combining fertilizer optimization with soil acidity amendment can effectively achieve sustainable crop production in China, especially in Southeast China. However, there is a lack of long-term studies assessing the environmental and economic sustainability of combining fertilizer optimization with soil acidity amendment strategies, especially in fruit production. A four-year field experiment was conducted to explore pomelo yield, fruit quality, and environmental and economic performance in three treatments, e.g., local farmer practices (FP), optimized NPK fertilizer application (OPT), and OPT with lime (OPT+L). The results showed that the OPT+L treatment exhibited the highest pomelo yield and fruit quality among the three treatments. The OPT treatment had the lowest net greenhouse gas (GHG) emissions among the three treatments, which were 90.1 % and 42.6 % lower than those in FP and OPT+L, respectively. It is essential to note that GHG emissions associated with lime production constitute 40.7 % of the total emissions from fertilizer production. The OPT+L treatment reduced reactive nitrogen (Nr) emissions and phosphorus (P) losses, compared to FP and OPT. Moreover, the OPT+L treatment increased the net ecosystem economic benefit by 220.3 % and 20.3 % compared with the FP and OPT treatments, respectively. Overall, the OPT and OPT+L treatments underscore the potential to achieve environmentally friendly and economically sustainable pomelo production. Our study provides science-based evidence to achieve better environmental and economic performance in pomelo production through optimized NPK fertilization and alleviating soil acidification by lime.

14.
Animals (Basel) ; 13(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067031

ABSTRACT

Avian influenza viruses can cross species barriers and adapt to mammals. The H7N9 subtype AIV that emerged in China in 2013 caused 1568 human infections, with a mortality rate of nearly 40%. We conducted a retrospective analysis of H7N9 viruses that were isolated in live poultry markets in 2013. We found that two avian-origin H7N9 isolates, A/chicken/Eastern China/JTC4/2013 and A/chicken/Eastern China/JTC11/2013, have a similar genetic background but exhibit different pathogenicity in mice. Whole-genome alignment of the two H7N9 viruses was carried out, and only six amino acid differences mapped in five genes, including the well-known virulence molecular marker PB2-E627K. Our retrospective analysis highlighted the importance of monitoring the adaptive mutations in avian influenza viruses with zoonotic potential.

15.
Front Plant Sci ; 14: 1301791, 2023.
Article in English | MEDLINE | ID: mdl-38126020

ABSTRACT

The application of mycorrhizal fungi as a bioaugmentation technology for phytoremediation of heavy metal (HM) contaminated soil has attracted widespread attention. In order to explore whether the adaptation of Pinus massoniana (P. massoniana) to metal polluted soil depends on the metal adaptation potential of their associated ectomycorrhizal fungi (ECMF), we evaluated the cadmium (Cd) tolerance of 10 ecotypes of Cenococcum geophilum (C. geophilum) through a membership function method, and P. massoniana seedlings were not (NM) or inoculated by Cd non-tolerant type (JaCg144), low-tolerant (JaCg32, JaCg151) and high-tolerant (JaCg205) isolates of C. geophilum were exposed to 0 and 100 mg·kg-1 for 3 months. The result showed that, each ecotype of C. geophilum significantly promoted the growth, photosynthesis and chlorophyll content, proline (Pro) content and the activity of peroxidase (POD) of P. massoniana seedlings, and decreased malonaldehyde (MDA) content and catalase (CAT) and superoxide dismutase (SOD) activity. The comprehensive evaluation D value of the tolerance to Cd stress showed that the order of the displaced Cd resistance of the four ecotypic mycorrhizal P. massoniana was: JaCg144 > JaCg151 > JaCg32 > JaCg205. Pearson correlation analysis showed that the Sig. value of the comprehensive evaluation (D) values of the strains and mycorrhizal seedlings was 0.077 > 0.05, indicating that the Cd tolerance of the the C. geophilum isolates did not affect its regulatory effect on the Cd tolerance of the host plant. JaCg144 and JaCg151 which are non-tolerant and low-tolerant ecotype significantly increased the Cd content in the shoots and roots by about 136.64-181.75% and 153.75-162.35%, indicating that JaCg144 and JaCg151 were able to effectively increase the enrichment of Cd from the soil to the root. Transcriptome results confirmed that C. geophilum increased the P. massoniana tolerance to Cd stress through promoting antioxidant enzyme activity, photosynthesis, and lipid and carbohydrate synthesis metabolism. The present study suggests that mental-non-tolerant ecotypes of ECMF can protect plants from Cd pollution, providing more feasible strategies for ectomycorrhizal-assisted phytoremediation.

16.
Nanotechnology ; 35(8)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37995360

ABSTRACT

The strong anisotropic electronic transport properties of the single-atom-thick material CoN4C2monolayer hold immense importance for the advancement of the electronics industry. Using density functional theory combined with non-equilibrium Green's function systematically studied the electronic structural properties and anisotropic electronic transport properties of the CoN4C2monolayer. The results show that Co, N, and C single-atom vacancy defects do not change the electronic properties of the CoN4C2monolayer, which remains metallic. The pristine device and the devices composed of Co, N single-atom vacancy defects exhibit stronger electronic transport along the armchair direction than the zigzag direction, which exhibit strong anisotropy, and a negative differential resistance (NDR) effect can be observed. In contrast to the results mentioned above, the device with C single-atom vacancy defects only exhibits the NDR effect. Among them, the device with the N single-atom vacancy defect regime exhibits the strongest anisotropy, with anIZ/IAof up to 7.95. Moreover, based on the strongest anisotropy exhibited by N single-atom vacancy defects, we further studied the influence of different sites of the N-atom vacancy on the electronic transport properties of the devices. The results indicate that N-1, N-2, N-3, N-12, N-23, N-123, N-1234, and N-12345 model devices did not change the high anisotropy and NDR effect of the device, and among them the N-1234 exhibits the strongest anisotropy, theIZ/IAreaches 6.12. A significant NDR effect is also observed for the electronic transport along the armchair direction in these devices. However, the current gradually decreases as an increase of the number of N defects. These findings showcase the considerable potential for integration of the CoN4C2monolayer in switching devices and NDR-based multifunctional nanodevices.

17.
Cancer Cell Int ; 23(1): 266, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37941005

ABSTRACT

BACKGROUND: The hypoxia-responsive long non-coding RNA, RP11-367G18.1, has recently been reported to induce histone 4 lysine 16 acetylation (H4K16Ac) through its variant 2; however, the underlying molecular mechanism remains poorly understood. METHODS: RNA pull-down assay and liquid chromatography-tandem mass spectrometry were performed to identify RP11-367G18.1 variant 2-binding partner. The molecular events were examined utilizing western blot analysis, real-time PCR, luciferase reporter assay, chromatin immunoprecipitation, and chromatin isolation by RNA purification assays. The migration, invasion, soft agar colony formation, and in vivo xenograft experiments were conducted to evaluate the impact of RP11-367G18.1 variant 2-YY1 complex on tumor progression. RESULTS: In this study, RNA sequencing data revealed that hypoxia and RP11-367G18.1 variant 2 co-regulated genes were enriched in tumor-related pathways. YY1 was identified as an RP11-367G18.1 variant 2-binding partner that activates the H4K16Ac mark. YY1 was upregulated under hypoxic conditions and served as a target gene for hypoxia-inducible factor-1α. RP11-367G18.1 variant 2 colocalized with YY1 and H4K16Ac in the nucleus under hypoxic conditions. Head and neck cancer tissues had higher levels of RP11-367G18.1 and YY1 which were associated with poor patient outcomes. RP11-367G18.1 variant 2-YY1 complex contributes to hypoxia-induced epithelial-mesenchymal transition, cell migration, invasion, and tumorigenicity. YY1 regulated hypoxia-induced genes dependent on RP11-367G18.1 variant 2. CONCLUSIONS: RP11-367G18.1 variant 2-YY1 complex mediates the tumor-promoting effects of hypoxia, suggesting that this complex can be targeted as a novel therapeutic strategy for cancer treatment.

18.
Children (Basel) ; 10(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38002818

ABSTRACT

OBJECTIVE: This study explored the clinical features and immune responses of children with primary ciliary dyskinesia (PCD) during pneumonia episodes. METHODS: The 61 children with PCD who were admitted to hospital because of pneumonia were retrospectively enrolled into this study between April 2017 and August 2022. A total of 61 children with pneumonia but without chronic diseases were enrolled as the control group. The clinical characteristics, levels of inflammatory indicators, pathogens, and imaging features of the lungs were compared between the two groups. RESULTS: The PCD group had higher levels of lymphocytes (42.80% versus 36.00%, p = 0.029) and eosinophils (2.40% versus 1.25%, p = 0.020), but lower neutrophil counts (3.99 versus 5.75 × 109/L, p = 0.011), percentages of neutrophils (46.39% versus 54.24%, p = 0.014), CRP (0.40 versus 4.20 mg/L, p < 0.001) and fibrinogen (257.50 versus 338.00 mg/dL, p = 0.010) levels. Children with PCD and children without chronic diseases were both most commonly infected with Mycoplasma pneumoniae (24.6% versus 51.9%). Children with PCD had significantly more common imaging features, including mucous plugging (p = 0.042), emphysema (p = 0.007), bronchiectasis (p < 0.001), mosaic attenuation (p = 0.012), interstitial inflammation (p = 0.015), and sinusitis (p < 0.001). CONCLUSION: PCD is linked to immune system impairment, which significantly contributes to our understanding of the pathophysiology of this entity.

19.
Vet Microbiol ; 287: 109910, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38016409

ABSTRACT

Low pathogenic (LP) H7N9 avian influenza virus (AIV) emerged in 2013 and had spread widely over several months in China, experienced a noteworthy reduction in isolation rate in poultry and human since 2017. Here, we examined the transmission of H7N9 viruses to better understand viral spread and dissemination mechanisms. Three out of four viruses (2013-2016) could transmit in chickens through direct contact, and airborne transmission was confirmed in the JT157 (2016) virus. However, we did not detect the transmission of the two 2017 viruses, WF69 and AH395, through either direct or airborne exposure. Molecular analysis of genome sequence of two viruses identified eleven mutations located in viral proteins (except for matrix protein), such as PA (K362R and S364N) and HA (D167N, H7 numbering), etc. We explored the genetic determinants that contributed to the difference in transmissibility of the viruses in chickens by generating a series of reassortants in the JT157 background. We found that the replacement of HA gene in JT157 by that of WF69 abrogated the airborne transmission in recipient chickens, whereas the combination of HA and PA replacement led to the loss of airborne and direct contact transmission. Failure with contact transmission of the viruses has been associated with the emergence of the mutations D167N in HA and K362R and S364N in PA. Furthermore, the HA D167N mutation significantly reduced viral attachment to chicken lung and trachea tissues, while mutations K362R and S364N in PA reduced the nuclear transport efficiency and the PA protein expression levels in both cytoplasm and nucleus of CEF cells. The D167N substitution in HA reduced the H7N9 viral acid stability and avian-like receptor binding, while enhanced human-like receptor binding. Further analysis revealed these mutants grew poorly in vitro and in vivo. To conclude, H7N9 AIVs that contain mutations in the HA and PA protein reduced the viral transmissibility in chicken, and may pose a reduced threat for poultry but remain a heightened public health risk.


Subject(s)
Hemagglutinins , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , Humans , Chickens , Influenza A Virus, H7N9 Subtype/genetics , Mutation , Poultry , Hemagglutinins/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics
20.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834055

ABSTRACT

Despite the notable progress made in recent years, the understanding of the genetic control of gonadal sex differentiation and asymmetrical ovariogenesis in chicken during embryonic development remains incomplete. This study aimed to identify potential key genes and speculate about the mechanisms associated with ovary and testis development via an analysis of the results of PacBio and Illumina transcriptome sequencing of embryonic chicken gonads at the initiation of sexual differentiation (E4.5, E5.5, and E6.5). PacBio sequencing detected 328 and 233 significantly up-regulated transcript isoforms in females and males at E4.5, respectively. Illumina sequencing detected 95, 296 and 445 DEGs at E4.5, E5.5, and E6.5, respectively. Moreover, both sexes showed asymmetrical expression in gonads, and more DEGs were detected on the left side. There were 12 DEGs involved in cell proliferation shared between males and females in the left gonads. GO analysis suggested that coagulation pathways may be involved in the degradation of the right gonad in females and that blood oxygen transport pathways may be involved in preventing the degradation of the right gonad in males. These results provide a comprehensive expression profile of chicken embryo gonads at the initiation of sexual differentiation, which can serve as a theoretical basis for further understanding the mechanism of bird sex determination and its evolutionary process.


Subject(s)
Chickens , Testis , Female , Male , Animals , Chick Embryo , Chickens/genetics , Testis/metabolism , Gonads/metabolism , Ovary/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental
SELECTION OF CITATIONS
SEARCH DETAIL
...