Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biochem Pharmacol ; 225: 116269, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723723

ABSTRACT

Antimicrobial peptides (AMPs), which have a low probability of developing resistance, are considered the most promising antimicrobial agents for combating antibiotic resistance. Feleucin-K3 is an amphiphilic cationic AMP that exhibits broad-spectrum antimicrobial activity. In our previous research, the first phenylalanine residue was identified as the critical position affecting its biological activity. Here, a series of Feleucin-K3 analogs containing hydrophobic D-amino acids were developed, leveraging the low sensitivity of proteases to unnatural amino acids and the regulatory effect of hydrophobicity on antimicrobial activity. Among them, K-1dF, which replaced the phenylalanine of Feleucin-K3 with its enantiomer (D-phenylalanine), exhibited potent antimicrobial activity with a therapeutic index of 46.97 and MICs between 4 to 8 µg/ml against both sensitive and multidrug-resistant Acinetobacter baumannii. The introduction of D-phenylalanine increased the salt tolerance and serum stability of Feleucin-K3. Moreover, K-1dF displayed a rapid bactericidal effect, a low propensity to develop resistance, and a synergistic effect when combined with antibiotics. More importantly, it exhibited considerable or superior efficacy to imipenem against pneumonia and skin abscess infection. In brief, the K-1dF obtained by simple and effective modification strategy has emerged as a promising candidate antimicrobial agent for tackling multidrug-resistant Acinetobacter baumannii infections.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Acinetobacter baumannii/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/physiology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Amino Acid Substitution , Mice , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/administration & dosage , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/administration & dosage , Drug Stability , Female
2.
ACS Pharmacol Transl Sci ; 7(4): 1126-1141, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633584

ABSTRACT

Renal fibrosis is a complex pathological process that contributes to the development of chronic kidney disease due to various risk factors. Conservative treatment to curb progression without dialysis or renal transplantation is widely applicable, but its effectiveness is limited. Here, the inhibitory effect of the novel peptide DR3penA (DHα-(4-pentenyl)-AlaNPQIR-NH2), which was developed by our group, on renal fibrosis was assessed in cells and mice with established fibrosis and fibrosis triggered by transforming growth factor-ß1 (TGF-ß1), unilateral ureteral obstruction, and repeated low-dose cisplatin. DR3penA preserved renal function and ameliorated renal fibrosis at a dose approximately 100 times lower than that of captopril, which is currently used in the clinic. DR3penA also significantly reduced existing fibrosis and showed similar efficacy after subcutaneous or intraperitoneal injection. Mechanistically, DR3penA repressed TGF-ß1 signaling via miR-212-5p targeting of low-density lipoprotein receptor class a domain containing 4, which interacts with Smad2/3. In addition to having good pharmacological effects, DR3penA could preferentially target injured kidneys and exhibited low toxicity in acute and chronic toxicity experiments. These results unveil the advantages of DR3penA regarding efficacy and toxicity, making it a potential candidate compound for renal fibrosis therapy.

3.
Eur J Med Chem ; 264: 116001, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38056301

ABSTRACT

The emergence and increasing prevalence of multidrug-resistant (MDR) bacteria have posed an urgent demand for novel antibacterial drugs. Currently, antimicrobial peptides (AMPs), potential novel antimicrobial agents with rare antimicrobial resistance, represent an available strategy to combat MDR bacterial infections but suffer the limitation of protease degradation. In this study, we developed a highly effective method for optimizing the stability of AMPs by introducing fluorinated sulfono-γ-AApeptides, and successfully synthesized novel Feleucin-K3-analogs. The results demonstrated that the incorporation of fluorinated sulfono-γ-AA into Feleucin-K3 effectively improved stability and afforded optimal peptides, such as CF3-K11, which exhibited 8-9 times longer half-lives than Feleucin-K3. Moreover, CF3-K11 displayed potent antimicrobial activity against clinically isolated Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA), excellent biosafety, low resistance propensity, and possessed powerful antimicrobial efficacy for both local skin infection and pneumonia infection. The optimal CF3-K11 exhibited strong therapeutic potential and offered a superior approach for treating MDR bacterial infections.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Pseudomonas Infections , Humans , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Peptides , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Microbial Sensitivity Tests
4.
J Pharmacol Exp Ther ; 388(2): 701-714, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38129127

ABSTRACT

Interstitial lung diseases (ILDs) are a group of restrictive lung diseases characterized by interstitial inflammation and pulmonary fibrosis. The incidence of ILDs associated with exposure to multiple hazards such as inhaled particles, fibers, and ingested soluble chemicals is increasing yearly, and there are no ideal drugs currently available. Our previous research showed that the novel and low-toxicity peptide DHα-(4-pentenyl)-ANPQIR-NH2 (DR3penA) had a strong antifibrotic effect on a bleomycin-induced murine model. Based on the druggability of DR3penA, we sought to investigate its effects on respirable particulate silicon dioxide (SiO2)- and soluble chemical paraquat (PQ)-induced pulmonary fibrosis in this study by using western blot, quantitative reverse-transcription polymerase chain reaction (RT-qPCR), immunofluorescence, H&E and Masson staining, immunohistochemistry, and serum biochemical assays. The results showed that DR3penA alleviated the extent of fibrosis by inhibiting the expression of fibronectin and collagen I and suppressed oxidative stress and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Further study revealed that DR3penA may mitigate pulmonary fibrosis by negatively regulating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway and mitogen-activated protein kinase (MAPK) pathway. Unexpectedly, through the conversion of drug bioavailability under different routes of administration, DR3penA exerted antifibrotic effects equivalent to those of the positive control drug pirfenidone (PFD) at lower doses. In summary, DR3penA may be a promising lead compound for various fibrotic ILDs. SIGNIFICANCE STATEMENT: Our study verified that DHα-(4-pentenyl)-ANPQIR-NH2 (DR3penA) exhibited positive antifibrotic activity in pulmonary fibrosis induced by silicon dioxide (SiO2) particles and soluble chemical paraquat (PQ) and demonstrated a low-dose advantage compared to the small-molecule drug pirfenidone (PFD). The peptide DR3penA can be further developed for the treatment of multiple fibrotic lung diseases.


Subject(s)
Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Silicon Dioxide , Paraquat/toxicity , Paraquat/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Fibrosis , Bleomycin/toxicity , Lung
5.
FASEB J ; 37(11): e23225, 2023 11.
Article in English | MEDLINE | ID: mdl-37855708

ABSTRACT

Pulmonary fibrosis (PF), which is caused by continuous alveolar epithelial cell injury and abnormal repair, is referred to as a difficult disease of the lung system by the World Health Organization due to its rapid progression, poor prognosis, and high mortality rate. However, there is still a lack of ideal therapeutic strategies. The peptide DR8 (DHNNPQIR-NH2 ), which is derived from rapeseed, exerted antifibrotic activity in the lung, liver, and kidney in our previous studies. By studying the structure-activity relationship and rational design, we introduced an unnatural hydrophobic amino acid (α-(4-pentenyl)-Ala) into DR8 and screened the novel peptide DR4penA (DHNα-(4-pentenyl)-APQIR-NH2 ), which had higher anti-PF activity, higher antioxidant activity and a longer half-life than DR8. Notably, DR4penA attenuated bleomycin- and paraquat-induced PF, and the anti-PF activity of DR4penA was equivalent to that of pirfenidone. Additionally, DR4penA suppressed the TGF-ß/Smad pathway in TGF-ß1-induced A549 cells and paraquat-induced rats. This study demonstrates that the novel peptide DR4penA is a potential candidate compound for PF therapy, and its antifibrotic activity in different preclinical models of PF provides a theoretical basis for further study.


Subject(s)
Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Bleomycin/adverse effects , Paraquat/adverse effects , Lung/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta/metabolism , Peptides/pharmacology , Peptides/therapeutic use , Signal Transduction
6.
Cell Death Dis ; 14(6): 384, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37385990

ABSTRACT

The widespread application of antiandrogen therapies has aroused a significant increase in the incidence of NEPC, a lethal form of the disease lacking efficient clinical treatments. Here we identified a cell surface receptor neurokinin-1 (NK1R) as a clinically relevant driver of treatment-related NEPC (tNEPC). NK1R expression increased in prostate cancer patients, particularly higher in metastatic prostate cancer and treatment-related NEPC, implying a relation with the progression from primary luminal adenocarcinoma toward NEPC. High NK1R level was clinically correlated with accelerated tumor recurrence and poor survival. Mechanical studies identified a regulatory element in the NK1R gene transcription ending region that was recognized by AR. AR inhibition enhanced the expression of NK1R, which mediated the PKCα-AURKA/N-Myc pathway in prostate cancer cells. Functional assays demonstrated that activation of NK1R promoted the NE transdifferentiation, cell proliferation, invasion, and enzalutamide resistance in prostate cancer cells. Targeting NK1R abrogated the NE transdifferentiation process and tumorigenicity in vitro and in vivo. These findings collectively characterized the role of NK1R in tNEPC progression and suggested NK1R as a potential therapeutic target.


Subject(s)
Prostatic Neoplasms , Receptors, Neurokinin-1 , Male , Humans , Receptors, Neurokinin-1/genetics , Aurora Kinase A , Proto-Oncogene Proteins c-myc/genetics , Protein Kinase C-alpha , Signal Transduction , Neoplasm Recurrence, Local , Prostatic Neoplasms/genetics
7.
Acta Pharm Sin B ; 13(2): 722-738, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36873181

ABSTRACT

Pulmonary fibrosis (PF) is a pathological change caused by repeated injuries and repair dysfunction of the alveolar epithelium. Our previous study revealed that the residues Asn3 and Asn4 of peptide DR8 (DHNNPQIR-NH2) could be modified to improve stability and antifibrotic activity, and the unnatural hydrophobic amino acids α-(4-pentenyl)-Ala and d-Ala were considered in this study. DR3penA (DHα-(4-pentenyl)-ANPQIR-NH2) was verified to have a longer half-life in serum and to significantly inhibit oxidative damage, epithelial-mesenchymal transition (EMT) and fibrogenesis in vitro and in vivo. Moreover, DR3penA has a dosage advantage over pirfenidone through the conversion of drug bioavailability under different routes of administration. A mechanistic study revealed that DR3penA increased the expression of aquaporin 5 (AQP5) by inhibiting the upregulation of miR-23b-5p and the mitogen-activated protein kinase (MAPK) pathway, indicating that DR3penA may alleviate PF by regulating MAPK/miR-23b-5p/AQP5. Safety evaluation showed that DR3penA is a peptide drug without obvious toxicity or acute side effects and has significantly improved safety compared to DR8. Thus, our findings suggest that DR3penA, as a novel and low-toxic peptide, has the potential to be a leading compound for PF therapy, which provides a foundation for the development of peptide drugs for fibrosis-related diseases.

8.
Cell Death Dis ; 13(1): 41, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013118

ABSTRACT

Despite the great advances in target therapy, lung cancer remains the top cause of cancer-related death worldwide. G protein-coupled receptor neurokinin-1 (NK1R) is shown to play multiple roles in various cancers; however, the pathological roles and clinical implication in lung cancer are unclarified. Here we identified NK1R as a significantly upregulated GPCR in the transcriptome and tissue array of human lung cancer samples, associated with advanced clinical stages and poor prognosis. Notably, NK1R is co-expressed with epidermal growth factor receptor (EGFR) in NSCLC patients' tissues and co-localized in the tumor cells. NK1R can crosstalk with EGFR by interacting with EGFR, transactivating EGFR phosphorylation and regulating the intracellular signaling of ERK1/2 and Akt. Activation of NK1R promotes the proliferation, colony formation, EMT, MMP2/14 expression, and migration of lung cancer cells. The inhibition of NK1R by selective antagonist aprepitant repressed cell proliferation and migration in vitro. Knockdown of NK1R significantly slowed down the tumor growth in nude mice. The sensitivity of lung cancer cells to gefitinib/osimertinib is highly increased in the presence of the selective NK1R antagonist aprepitant. Our data suggest that NK1R plays an important role in lung cancer development through EGFR signaling and the crosstalk between NK1R and EGFR may provide a potential therapeutic target for lung cancer treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Receptors, Neurokinin-1/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Progression , Drug Synergism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Lung Neoplasms/pathology , Mice , Neurokinin-1 Receptor Antagonists/pharmacology , Phosphorylation , Prognosis , Protein Kinase Inhibitors/pharmacology , Receptors, Neurokinin-1/genetics , Signal Transduction
9.
Eur J Pharmacol ; 908: 174346, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34270985

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most common cancer in the world. Gefitinib, an inhibitor of EGFR tyrosine kinase, is highly effective in treating NSCLC patients with activating EGFR mutations (L858R or Ex19del). However, despite excellent disease control with gefitinib therapy, innate resistance and inevitable acquired resistance represent immense challenges in NSCLC therapy. Gefitinib potently induces cytoprotective autophagy, which has been implied to contribute to both innate and acquired resistance to gefitinib in NSCLC cells. Currently, abrogation of autophagy is considered a promising strategy for NSCLC therapy. In the present study, YC-1, an inhibitor of HIF-1α, was first found to significantly inhibit the autophagy induced by gefitinib by disrupting the fusion of autophagosomes and lysosomes and thereby enhancing the proapoptotic effect of gefitinib in gefitinib-resistant NSCLC cells. Furthermore, the combinational anti-autophagic and pro-apoptotic effect of gefitinib and YC-1 was demonstrated to be associated with an enhanced of forkhead box protein O1 (FOXO1) transcriptional activity which resulted from an increase in the p-FOXO1 protein level in gefitinib-resistant NSCLC cells. Our data suggest that inhibition of autophagy by targeting FOXO1 may be a feasible therapeutic strategy to overcome both innate and acquired resistance to EGFR-TKIs.


Subject(s)
Gefitinib , Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Humans , Lung Neoplasms
10.
Biomolecules ; 11(5)2021 05 19.
Article in English | MEDLINE | ID: mdl-34069651

ABSTRACT

The dramatic increase in antimicrobial resistance (AMR) highlights an urgent need to develop new antimicrobial therapies. Thus, antimicrobial peptides (AMPs) have emerged as promising novel antibiotic alternatives. Feleucin-K3 is an amphiphilic α-helical nonapeptide that has powerful antimicrobial activity. In our previous study, it was found that the fourth residue of Feleucin-K3 is important for antimicrobial activity. After α-(4-pentenyl)-Ala was introduced into this position, both the antimicrobial activity and stability were greatly improved. Herein, to improve the limitations of Feleucin-K3, this unnatural amino acid was further introduced into different positions of Feleucin-K3. Among these synthetic Feleucin-K3 analogs, the N-terminal-substituted analog Feleucin-K65 (K65) and C-terminal-substituted analog Feleucin-K70 (K70) had preferable antimicrobial activity. In particular, their antimicrobial activities against multidrug-resistant bacteria were more potent than that of antibiotics. The stabilities of these peptides in salt and serum environments were improved compared with those of Feleucin-K3. In addition, these analogs had low hemolytic activity and AMR. More importantly, they effectively inhibited biofilm formation and exhibited considerable efficacy compared with traditional antibiotics against biofilm infection caused by methicillin-resistant Staphylococcus aureus (MRSA). In antimicrobial mechanism studies, K65 and K70 mainly permeated the outer membrane and depolarized the cytoplasmic membrane, resulting in cellular component leakage and cell death. In summary, analogs K65 and K70 are potential antimicrobial alternatives to solve the antibiotic crisis.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Antimicrobial Cationic Peptides/administration & dosage , Biofilms/growth & development , Methicillin-Resistant Staphylococcus aureus/physiology , Staphylococcal Infections/drug therapy , Alanine/chemistry , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Biofilms/drug effects , Drug Stability , Female , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Microbial Sensitivity Tests , Protein Structure, Secondary , Salts/chemistry , Serum/chemistry
11.
Acta Pharm Sin B ; 11(1): 100-111, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33532183

ABSTRACT

The antimicrobial peptide APKGVQGPNG (named YD), a natural peptide originating from Bacillus amyloliquefaciens CBSYD1, exhibited excellent antibacterial and antioxidant properties in vitro. These characteristics are closely related to inflammatory responses which is the central trigger for liver fibrosis. However, the therapeutic effects of YD against hepatic fibrosis and the underlying mechanisms are rarely studied. In this study, we show that YD improved liver function and inhibited the progression of liver fibrosis by measuring the serum transaminase activity and the expression of α-smooth muscle actin and collagen I in carbon tetrachloride-induced mice. Then we found that YD inhibited the level of miR-155, which plays an important role in inflammation and liver fibrosis. Bioinformatics analysis and luciferase reporter assay indicate that Casp12 is a new target of miR-155. We demonstrate that YD significantly decreases the contents of inflammatory cytokines and suppresses the NF-κB signaling pathway. Further studies show that transfection of the miR-155 mimic in RAW264.7 cells partially reversed the YD-mediated CASP12 upregulation, the downregulated levels of inflammatory cytokines, and the inactivation of the NF-κB pathways. Collectively, our study indicates that YD reduces inflammation through the miR-155-Casp12-NF-κB axis during liver fibrosis and provides a promising therapeutic candidate for hepatic fibrosis.

12.
ACS Infect Dis ; 7(1): 64-78, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33296183

ABSTRACT

The development of antimicrobial compounds is now regarded as an urgent problem. Antimicrobial peptides (AMPs) have great potential to become novel antimicrobial drugs. Feleucin-K3 is an α-helical cationic AMP isolated from the skin secretion of the Asian bombinid toad species Bombina orientalis and has antimicrobial activity. In our previous studies, amino acid scanning of Feleucin-K3 was performed to determine the key site affecting its activity. In this study, we investigated and synthesized a series of analogues that have either a natural or an unnatural hydrophobic amino acid substitution at the fourth amino acid residue of Feleucin-K3. Among these analogues, Feleucin-K59 (K59), which has an α-(4-pentenyl)-Ala substitution, was shown to have increased antimicrobial activity against both standard and drug-resistant strains of clinical common bacteria, improved stability, no hemolytic activity at antimicrobial concentrations, and no resistance. In addition, K59 has potent antibiofilm activity in vitro. More importantly, K59 showed better antimicrobial and antibiofilm activities against drug-resistant bacteria in in vivo experiments in mice than traditional antibiotics. In this preliminary study of the mechanism of action, we found that K59 could rapidly kill bacteria by a dual-action mechanism of disrupting the cell membrane and binding to intracellular DNA, thus making it difficult for bacteria to develop resistance.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Biofilms , Mice , Microbial Sensitivity Tests
13.
Life Sci ; 261: 118465, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32956665

ABSTRACT

AIMS: Renal fibrosis is a progressive disease that leads to renal dysfunction and end-stage renal failure, and there is currently no specific treatment. Our previous study showed that the 8-residue peptide DR8 (DHNNPQIR) exhibits potent antioxidant and antifibrotic properties, and accumulating evidence suggests that oxidative stress contributes greatly to fibrosis. The effects and mechanisms of DR8 on renal fibrosis remain unknown. MATERIALS AND METHODS: The effects of DR8 were assessed in a unilateral ureteral obstruction mouse model that received a daily, single-dose subcutaneous injection of 500 µg/kg DR8 for 14 days and in cultured cells (HK-2 and NIH-3T3 cells) treated with 5 ng/mL TGF-ß1 and 80 µM DR8. Western blotting, immunohistochemical staining, real-time qPCR and other tools were conducted to study the molecular mechanisms underlying antifibrotic effects. KEY FINDINGS: DR8 improved renal function and reduced injury and extracellular matrix (ECM) deposition. Inflammation and oxidative stress were alleviated by DR8 in vivo. DR8 also inhibited the activation of fibroblasts and ECM deposition in HK-2 and NIH-3T3 cells induced by TGF-ß1. In addition, epithelial-to-mesenchymal transition (EMT) was inhibited by DR8 both in vivo and in vitro. Mechanistic studies supported that DR8 inhibited ERK and p38 mitogen-activated protein kinase (MAPK) activation. These results indicate that DR8 attenuates renal fibrosis via suppression of EMT by antagonizing the MAPK pathway. SIGNIFICANCE: We provide mechanistic details for a potential therapeutic agent and establish a foundation for peptide therapeutics.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Mitogen-Activated Protein Kinases/metabolism , Peptides/therapeutic use , Transforming Growth Factor beta1/metabolism , Animals , Cell Line , Fibrosis , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Peptides/chemistry , Signal Transduction/drug effects
14.
Transfus Apher Sci ; 59(6): 102899, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32778523

ABSTRACT

Riboflavin plus UV light pathogen reduction technology (RF-PRT) is an effective method for inactivating donor-derived leukocytes (DDLs) in blood components. Literature data have shown that reactive oxygen species (ROS) increased in lymphocytes after RF-PRT treatment. Sustained high levels of ROS may abolish the endogenous antioxidant system, leading to damage to proteins, lipids, and nucleic acids, resulting in cell apoptosis. Nevertheless, whether riboflavin plus UV light can trigger leukocyte apoptosis remains obscure. In this study, a pool-and-split design, ABO/D-matched lymphocytes treated with RF-PRT or UV light or left untreated. After treatment, the level of ROS and intracellular calcium were measured in samples. Changes in the protein expression of cleaved PARP, Bax, and Bcl-2 and the activities of caspase-3 and caspase-9 were determined by immunoblot analysis or luminometer, respectively. Cell apoptosis was evaluated by flow cytometry. The effect of ROS on apoptosis was assessed. The RF-PRT treatment significantly augmented ROS production, intracellular calcium concentration. The pro-apoptotic proteins expression levels of Bax, but did not the anti-apoptotic protein Bcl-2, were markedly increased after the RF-PRT treatment. Furthermore, the percentage of apoptotic cells was increased in RF-PRT-treated lymphocytes compared to UV-treated cells or untreated cells. Moreover, the inhibition of ROS generation partially neutralized the apoptosis effects of riboflavin plus UV treatment. These findings revealed that RF-PRT-treated lymphocytes significantly increase the proportion of apoptotic cells by promoting ROS generation delineation of the biochemical processes influenced by RF-PRT are a necessary step to provide novel insights into the riboflavin pathogen inactivation technology.


Subject(s)
Apoptosis/drug effects , Blood Transfusion/methods , Lymphocytes/drug effects , Riboflavin/adverse effects , Ultraviolet Rays/adverse effects , Humans , Reactive Oxygen Species , Riboflavin/pharmacology
15.
Biochimie ; 176: 1-11, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32590058

ABSTRACT

The evolution of Staphylococcus aureus (S. aureus) with the ability to acquire and develop resistance to antibiotics has been described as a distinct strain emergence event. Methicillin-resistant S. aureus (MRSA) is responsible for most global S. aureus bacteremia cases. Bacterial biofilms are one of the primary reasons for drug resistance. Biofilms formed by S. aureus are the most common cause of biofilm-associated infections, which increase the difficulty of treatment. Antimicrobial peptides (AMPs) represent promising candidates for the future treatment of antibiotic-resistant bacterial and biofilm-associated infections. In this study, we designed and synthesized a series of analogs to increase the druggability of the natural antimicrobial peptide CPF-C1. Among the analogs, CPF-2 showed high antimicrobial activity against MRSA and multidrug-resistant S. aureus isolated from clinics. In the serum and physiological salt environment, CPF-2 also exhibited effective antimicrobial activity. Importantly, CPF-2 did not determine resistance and showed no hemolytic activity at the active concentration. Concerning the mechanism of action, CPF-2 produced a rapid bactericidal effect by interrupting the bacterial membranes. Even more surprisingly, CPF-2 showed an excellent ability to prevent and eradicate biofilms caused by S. aureus and MRSA not only in vitro but also in vivo. Our results suggested that CPF-2 has potential as a lead compound to treat infections caused by S. aureus and MRSA, including the associated biofilms.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Cationic Peptides , Biofilms , Methicillin-Resistant Staphylococcus aureus/physiology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Mice
16.
Eur J Pharmacol ; 874: 172961, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32044322

ABSTRACT

The tyrosine kinase inhibitor (TKI) gefitinib exerts good therapeutic effect on NSCLC patients with sensitive EGFR-activating mutations. However, most patients ultimately relapse due to the development of drug resistance after 6-12 months of treatment. Here, we showed that a HIF-1α inhibitor, YC-1, potentiated the antitumor efficacy of gefitinib by promoting EGFR degradation in a panel of human NSCLC cells with wild-type or mutant EGFRs. YC-1 alone had little effect on NSCLC cell survival but significantly enhanced the antigrowth and proapoptotic effects of gefitinib. In insensitive NSCLC cell lines, gefitinib efficiently inhibited the phosphorylation of EGFR but not the downstream signaling of ERK, AKT and STAT3; however, when combined with YC-1 treatment, these signaling pathways were strongly impaired. Gefitinib treatment induced EGFR arrest in the early endosome, and YC-1 treatment promoted delayed EGFR transport into the late endosome as well as receptor degradation. Moreover, the YC-1-induced reduction of HIF-1α protein was associated with the enhancement of EGFR degradation. HIF-1α knockdown promoted EGFR degradation, showing synergistic antigrowth and proapoptotic effects similar to those of the gefitinib and YC-1 combination treatment in NSCLC cells. Our findings provide a novel combination treatment strategy with gefitinib and YC-1 to extend the usage of gefitinib and overcome gefitinib resistance in NSCLC patients.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Gefitinib/pharmacology , Indazoles/pharmacology , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Endocytosis/drug effects , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Protein Transport/drug effects , Proteolysis/drug effects
17.
Biochim Biophys Acta Gen Subj ; 1864(4): 129532, 2020 04.
Article in English | MEDLINE | ID: mdl-31953126

ABSTRACT

BACKGROUND: Hybridization is a useful strategy to bond the advantages of different peptides into novel constructions. We designed a series of AMPs based on the structures of a synthetic AMP KFA3 and a naturally-occurred host defense peptide substance P (SP) to obtain peptides retaining the high antibacterial activity of KFA3 and the immunomodulatory activity and low cytotoxicity of SP. METHODS: Two repeats of KFA and different C terminal fragments of SP were hybridized, generating a series of novel AMPs (KFSP1-8). The antibacterial activities, host cell toxicity and immunomodulation were measured. The antibacterial mechanisms were investigated. RESULTS: Hybrid peptides KFSP1-4 exerted substantial antibacterial activities against Gram-negative bacteria of standard strains and clinical drug-resistant isolates including E.coli, A.baumannii and P.aeruginosa, while showing little toxicity towards host cells. Compared with KFA3, moderate reduction in α-helix content and the interruption in α-helix continuality were indicated in CD spectra analysis and secondary-structure simulation in these peptides. Membrane permeabilization combined with time-kill studies and FITC-labeled imaging, indicated a selective membrane interaction of KFSP1 with bacteria cell membranes. By specially activating NK1 receptor, the hybrid peptides kept the ability of SP to induce intracellular calcium release and ERK1/2 phosphorylation, but unable to stimulate NF-κB phosphorylation. KFSP1 facilitated the survival of mouse macrophage RAW264.7, directly interacting with LPS and inhibiting the LPS-induced NF-κB phosphorylation and TNF-α expression. CONCLUSION: Hybridization is a useful strategy to bond the advantages of different peptides. KFSP1 and its analogs are worth of advanced efforts to explore their potential applications as novel antimicrobial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Immunologic Factors/pharmacology , Oligopeptides/pharmacology , Substance P/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Gram-Negative Bacteria/chemistry , Hep G2 Cells , Humans , Immunologic Factors/chemical synthesis , Immunologic Factors/chemistry , Lipopolysaccharides/antagonists & inhibitors , Mice , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , RAW 264.7 Cells , Structure-Activity Relationship , Substance P/chemical synthesis , Substance P/chemistry
18.
Amino Acids ; 50(10): 1471-1483, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30136030

ABSTRACT

Pseudomonas aeruginosa is particularly difficult to treat because it possesses a variety of resistance mechanisms and because it often forms biofilms. Antimicrobial peptides represent promising candidates for future templates of antibiotic-resistant bacterial infections due to their unique mechanism of antimicrobial action. In this study, we first found that the antimicrobial peptide Feleucin-K3 has potent antimicrobial activity against not only the standard strain of P. aeruginosa but also against the multidrug-resistant strains isolated from clinics. Then, the structure-activity relationship of the peptide was investigated using alanine and D-amino acid scanning. Among the analogs synthesized, FK-1D showed much more potent antimicrobial activity, superior stability, and very low toxicity, and it was able to permeabilize bacterial membranes. Furthermore, it exhibited significant anti-biofilm activity. More importantly, FK-1D showed excellent antimicrobial activity in vivo, especially against clinical multidrug-resistant bacteria, in contrast to ceftazidime. Our results suggested that FK-1D could be subjected to fixed-point modification in the first and fourth sites to further optimize its medicinal properties and potential as a lead compound for the treatment of infections caused by multidrug-resistant P. aeruginosa and the associated biofilms.


Subject(s)
Amino Acids/chemistry , Antimicrobial Cationic Peptides/pharmacology , Biofilms/drug effects , Drug Resistance, Bacterial , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents , Antimicrobial Cationic Peptides/chemistry , Microbial Sensitivity Tests , Pseudomonas aeruginosa/physiology , Structure-Activity Relationship
19.
Drug Des Devel Ther ; 12: 1255-1268, 2018.
Article in English | MEDLINE | ID: mdl-29795979

ABSTRACT

INTRODUCTION: Kidney fibrosis is the main pathologic change in diabetic nephropathy (DN), which is the major cause of end-stage renal disease. Current therapeutic strategies slow down but cannot reverse the progression of renal dysfunction in DN. Plant-derived bioactive peptides in foodstuffs are widely used in many fields because of their potential pharmaceutical and nutraceutical benefits. However, this type of peptide has not yet been studied in renal fibrosis of DN. Previous studies have indicated that the peptide YWDHNNPQIR (named RAP), a natural peptide derived from rapeseed protein, has an antioxidative stress effect. The oxidative stress is believed to be associated with DN. The aim of this study was to evaluate the pharmacologic effects of RAP against renal fibrosis of DN and high glucose (HG)-induced mesangial dysfunction. MATERIALS AND METHODS: Diabetes was induced by streptozotocin and high-fat diet in C57BL/6 mice and these mice were treated by subcutaneous injection of different doses of RAP (0.1 mg/kg and 0.5 mg/kg, every other day) or PBS for 12 weeks. Later, functional and histopathologic analyses were performed. Parallel experiments verifying the molecular mechanism by which RAP alleviates DN were carried out in HG-induced mesangial cells (MCs). RESULTS: RAP improved the renal function indices, including 24-h albuminuria, triglyceride, serum creatinine, and blood urea nitrogen levels, but did not lower blood glucose levels in DN mice. RAP also simultaneously attenuated extracellular matrix accumulation in DN mice and HG-induced MCs. Furthermore, RAP reduced HG-induced cell proliferation, but it showed no toxicity in MCs. Additionally, RAP inhibited the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling pathways. CONCLUSION: RAP can attenuate fibrosis in vivo and in vitro by antagonizing the MAPK and NF-κB pathways.


Subject(s)
Antioxidants/pharmacology , Diabetic Nephropathies/drug therapy , Fibrosis/drug therapy , Kidney Diseases/drug therapy , Mitogen-Activated Protein Kinases/antagonists & inhibitors , NF-kappa B/metabolism , Oligopeptides/pharmacology , Animals , Antioxidants/administration & dosage , Antioxidants/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Diabetic Nephropathies/chemically induced , Diabetic Nephropathies/metabolism , Diet, High-Fat , Dose-Response Relationship, Drug , Fibrosis/metabolism , Fibrosis/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , Oligopeptides/administration & dosage , Oligopeptides/chemistry , Signal Transduction/drug effects , Streptozocin/administration & dosage
20.
Chem Biol Drug Des ; 90(5): 690-702, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28371431

ABSTRACT

As numerous clinical isolates are resistant to most conventional antibiotics, infections caused by multidrug-resistant bacteria are associated with a higher death rate. Antimicrobial peptides show great potential as new antibiotics. However, a major obstacle to the development of these peptides as useful drugs is their low stability. To overcome the problem of the natural antimicrobial peptide CPF-C1, we designed and synthesized a series of analogs. Our results indicated that by introducing lysine, which could increase the number of positive charges, and by introducing tryptophan, which could increase the hydrophobicity, we could improve the antimicrobial activity of the peptides against multidrug-resistant strains. The introduction of d-amino acids significantly improved stability. Certain analogs demonstrated antibiofilm activities. In mechanistic studies, the analogs eradicated bacteria not just by interrupting the bacterial membranes, but also by linking to DNA, which was not impacted by known mechanisms of resistance. In a mouse model, certain analogs were able to significantly reduce the bacterial load. Among the analogs, CPF-9 was notable due to its greater antimicrobial potency in vitro and in vivo and its superior stability, lower hemolytic activity, and higher antibiofilm activity. This analog is a potential antibiotic candidate for treating infections induced by multidrug-resistant bacteria.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Bacteria/drug effects , Xenopus Proteins/chemistry , Xenopus Proteins/pharmacology , Animals , Anti-Bacterial Agents/therapeutic use , Antimicrobial Cationic Peptides/therapeutic use , Bacterial Infections/drug therapy , Biofilms/drug effects , Drug Resistance, Multiple, Bacterial , Escherichia coli/drug effects , Escherichia coli/physiology , Escherichia coli Infections/drug therapy , Female , Humans , Mice , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Xenopus Proteins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...