Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 30(5): 677-688.e5, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37019105

ABSTRACT

Human brain organoids provide unique platforms for modeling several aspects of human brain development and pathology. However, current brain organoid systems mostly lack the resolution to recapitulate the development of finer brain structures with subregional identity, including functionally distinct nuclei in the thalamus. Here, we report a method for converting human embryonic stem cells (hESCs) into ventral thalamic organoids (vThOs) with transcriptionally diverse nuclei identities. Notably, single-cell RNA sequencing revealed previously unachieved thalamic patterning with a thalamic reticular nucleus (TRN) signature, a GABAergic nucleus located in the ventral thalamus. Using vThOs, we explored the functions of TRN-specific, disease-associated genes patched domain containing 1 (PTCHD1) and receptor tyrosine-protein kinase (ERBB4) during human thalamic development. Perturbations in PTCHD1 or ERBB4 impaired neuronal functions in vThOs, albeit not affecting the overall thalamic lineage development. Together, vThOs present an experimental model for understanding nuclei-specific development and pathology in the thalamus of the human brain.


Subject(s)
Thalamic Nuclei , Thalamus , Humans , Thalamic Nuclei/pathology , Thalamic Nuclei/physiology , Neurons/physiology , Organoids
2.
Nat Commun ; 13(1): 430, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35058453

ABSTRACT

Microglia play a role in the emergence and preservation of a healthy brain microenvironment. Dysfunction of microglia has been associated with neurodevelopmental and neurodegenerative disorders. Investigating the function of human microglia in health and disease has been challenging due to the limited models of the human brain available. Here, we develop a method to generate functional microglia in human cortical organoids (hCOs) from human embryonic stem cells (hESCs). We apply this system to study the role of microglia during inflammation induced by amyloid-ß (Aß). The overexpression of the myeloid-specific transcription factor PU.1 generates microglia-like cells in hCOs, producing mhCOs (microglia-containing hCOs), that we engraft in the mouse brain. Single-cell transcriptomics reveals that mhCOs acquire a microglia cell cluster with an intact complement and chemokine system. Functionally, microglia in mhCOs protect parenchyma from cellular and molecular damage caused by Aß. Furthermore, in mhCOs, we observed reduced expression of Aß-induced expression of genes associated with apoptosis, ferroptosis, and Alzheimer's disease (AD) stage III. Finally, we assess the function of AD-associated genes highly expressed in microglia in response to Aß using pooled CRISPRi coupled with single-cell RNA sequencing in mhCOs. In summary, we provide a protocol to generate mhCOs that can be used in fundamental and translational studies as a model to investigate the role of microglia in neurodevelopmental and neurodegenerative disorders.


Subject(s)
Cerebral Cortex/metabolism , Microglia/metabolism , Organoids/cytology , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/toxicity , Animals , CRISPR-Cas Systems/genetics , Cell Lineage/drug effects , Cells, Cultured , Green Fluorescent Proteins/metabolism , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/ultrastructure , Humans , Mice , Microglia/drug effects , Microglia/ultrastructure , Organoids/metabolism , Phagocytosis/drug effects , Single-Cell Analysis
3.
Exp Mol Med ; 52(10): 1754-1765, 2020 10.
Article in English | MEDLINE | ID: mdl-33060769

ABSTRACT

Adenomyosis is defined as the presence of ectopic nests of endometrial glands and stroma within the myometrium. Adenomyosis is a common cause of dysmenorrhea, menorrhagia, and chronic pelvic pain but is often underdiagnosed. Despite its prevalence and severity of symptoms, its pathogenesis and etiology are poorly understood. Our previous study showed that aberrant activation of ß-catenin results in adenomyosis through epithelial-mesenchymal transition. Using transcriptomic and ChIP-seq analysis, we identified activation of TGF-ß signaling in the uteri of mutant mice that expressed dominant stabilized ß-catenin in the uterus. There was a strong positive correlation between ß-catenin and TGF-ß2 proteins in women with adenomyosis. Furthermore, treatment with pirfenidone, a TGF-ß inhibitor, increased E-cadherin expression and reduced cell invasiveness in Ishikawa cells with nuclear ß-catenin. Our results suggest that ß-catenin activates TGF-ß-induced epithelial-mesenchymal transition in adenomyosis. This finding describes the molecular pathogenesis of adenomyosis and the use of TGF-ß as a potential therapeutic target for adenomyosis.


Subject(s)
Adenomyosis/metabolism , Disease Susceptibility , Epithelial-Mesenchymal Transition , Transforming Growth Factor beta/metabolism , beta Catenin/metabolism , Adenomyosis/etiology , Adenomyosis/pathology , Animals , Binding Sites , Cadherins/metabolism , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Fluorescent Antibody Technique , Gene Expression Regulation , Humans , Immunohistochemistry , Mice , Mice, Transgenic , Protein Binding , Transforming Growth Factor beta/pharmacology
4.
ACS Appl Mater Interfaces ; 12(44): 49386-49397, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-32948093

ABSTRACT

This study examined whether neonatal chicken bone marrow cells (cBMCs) could support the osteogenesis of human stromal cells in a three-dimensional (3D) extracellular bioprinting niche. The majority (>95%) of 4-day-old cBMCs subcultured 5 times were positive for osteochondrogenesis-related genes (Col I, Col II, Col X, aggrecan, Sox9, osterix, Bmp2, osteocalcin, Runx2, and osteopontin) and their related proteins (Sox9, collagen type I, and collagen type II). LC-MS/MS analysis demonstrated that cBMC-conditioned medium (c-medium) contained proteins related to bone regeneration, such as periostin and members of the TGF-ß family. Next, a significant increase in osteogenesis was detected in three human adipose tissue-derived stromal cell (hASC) lines, after exposure to c-medium concentrates in 2D culture (p < 0.05). To evaluate biological function in a 3D environment, we employed the cBMC-derived bioactive components as a cell-supporting biomaterial in collagen bioink, which was printed to construct a 3D hASC-laden scaffold for observing osteogenesis. Complete osteogenesis was detected in vitro. Moreover, after transplantation of the hASC-laden structure into rats, prominent bone formation was observed compared with that in control rats receiving scaffold-free hASC transplantation. These results demonstrated that substance(s) secreted by chick bone marrow cells clearly activated the osteogenesis of hASCs in 2D- or 3D-niches.


Subject(s)
Bioprinting , Bone Marrow Cells/cytology , Ink , Printing, Three-Dimensional , Stromal Cells/cytology , Animals , Cells, Cultured , Chick Embryo , Chickens , Humans , Molecular Structure , Osteogenesis , Particle Size , Rats , Rats, Sprague-Dawley , Surface Properties
5.
Asian-Australas J Anim Sci ; 31(3): 335-343, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28823125

ABSTRACT

OBJECTIVE: Remarkable difference in cellular activity was found between early and late subpassaged embryonic stem cell (ESCs) lines, which can be created by subtle changes in cell manipulation protocol. This study subsequently examined whether post-thaw subculture of early subpassaged ESC lines could further affect the activity of the ESCs. METHODS: Fresh (as a control treatment) or cryopreserved F1 hybrid (B6CBAF1) early ESC lines (C57BL/6xCBA) of the 4 (P4) or the 19 passage (P19) were subcultured once, twice or six times under the same condition. The post-thaw survival of the ESCs was monitored after the post-treatment subculture and the ability of cell proliferation, reactive oxygen species (ROS) generation, apoptosis and mitochondrial ATP synthesis was subsequently examined. RESULTS: Regardless of the subculture number, P19 ESCs showed better (p<0.05) doubling time and less ATP production than P4 ESCs and such difference was not influenced by fresh or cryopreservation. The difference between P4 and P19 ESC lines became decreased as the post-treatment subculture was increased and the six times subculture eliminated such difference. Similarly, transient but prominent difference in ROS production and apoptotic cell number was detected between P4 and P19 ESCs only at the 1st subculture after treatment, but no statistical differences between two ESC lines was detected in other observations. CONCLUSION: The results of this study suggest that post-thaw subculture of ESCs under the same environment is recommended for standardizing their cellular activity. The activity of cell proliferation ability and ATP synthesis can be used as parameters for quality control of ESCs.

6.
Mol Cells ; 40(8): 558-566, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28756654

ABSTRACT

Regular monitoring on experimental animal management found the fluctuation of ART outcome, which showed a necessity to explore whether superovulation treatment is responsible for such unexpected outcome. This study was subsequently conducted to examine whether superovulation treatment can preserve ultrastructural integrity and developmental competence of oocytes following oocyte activation and embryo culture. A randomized study using mouse model was designed and in vitro development (experiment 1), ultrastructural morphology (experiment 2) and functional integrity of the oocytes (experiment 3) retrieved after PMSG/hCG injection (superovulation group) or not (natural ovulation; control group) were evaluated. In experiment 1, more oocytes were retrieved following superovulation than following natural ovulation, but natural ovulation yielded higher (p < 0.0563) maturation rate than superovulation. The capacity of mature oocytes to form pronucleus and to develop into blastocysts in vitro was similar. In experiment 2, a notable (p < 0.0186) increase in mitochondrial deformity, characterized by the formation of vacuolated mitochondria, was detected in the superovulation group. Multivesicular body formation was also increased, whereas early endosome formation was significantly decreased. No obvious changes in other microorganelles, however, were detected, which included the formation and distribution of mitochondria, cortical granules, microvilli, and smooth and rough endoplasmic reticulum. In experiment 3, significant decreases in mitochondrial activity, ATP production and dextran uptake were detected in the superovulation group. In conclusion, superovulation treatment may change both maturational status and functional and ultrastuctural integrity of oocytes. Superovulation effect on preimplantation development can be discussed.


Subject(s)
Cell Differentiation , Oocytes/cytology , Oocytes/ultrastructure , Superovulation/physiology , Animals , Cell Differentiation/drug effects , Chorionic Gonadotropin/pharmacology , Dextrans , Drug Combinations , Female , Fluorescein-5-isothiocyanate/metabolism , Gonadotropins, Equine/pharmacology , Horses , Humans , Male , Mice, Inbred C57BL , Oocytes/drug effects , Organelles/drug effects , Organelles/metabolism , Superovulation/drug effects
7.
J Biomed Mater Res B Appl Biomater ; 105(8): 2261-2268, 2017 Nov.
Article in English | MEDLINE | ID: mdl-27459401

ABSTRACT

We evaluated whether the genetic background of embryonic stem cells (ESCs) affects the properties suitable for three-dimensional (3D) synthetic scaffolds for cell self-renewal. Inbred R1 and hybrid B6D2F1 mouse ESC lines were cultured for 7 days in hydrogel scaffolds with different properties derived from conjugating 7.5, 10, 12.5, or 15% (wt/vol) vinylsulfone-functionalized three-, four-, or eight-arm polyethylene glycol (PEG) with dicysteine-containing crosslinkers with an intervening matrix metalloproteinase-specific cleavage sites. Cell proliferation and expression of self-renewal-related genes and proteins by ESCs cultured in feeder-free or containing 2D culture plate or 3D hydrogel were monitored. As a preliminary experiment, the E14 ESC-customized synthetic 3D microenvironment did not maintain self-renewal of either the R1 or B6D2F1 ESCs. The best R1 cell proliferation (10.04 vs. 0.16-4.39; p < 0.0001) was observed in the four-arm 7.5% PEG-based hydrogels than those with other properties, whereas the F1 ESCs showed better proliferation when they were embedded in the three-arm 10% hydrogels. Self-renewal-related gene and protein expression by ESCs after feeder-free 3D culture was generally maintained compared with the feeder-containing 2D culture, but expression patterns and quantities differed. However, the feeder-free 3D culture yielded better expression than the feeder-free 2D culture. In conclusion, genetic background determined the suitability of hydrogel scaffolds for self-renewal of ESCs, which requires customization for the mechanical properties of each cell line. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2261-2268, 2017.


Subject(s)
Cell Culture Techniques/methods , Cell Proliferation , Gene Expression Regulation , Hydrogels/chemistry , Mouse Embryonic Stem Cells/metabolism , Tissue Scaffolds/chemistry , Animals , Cell Line , Ethylenes/chemistry , Mice , Mouse Embryonic Stem Cells/cytology , Polyethylene Glycols/chemistry , Sulfonic Acids/chemistry
8.
PLoS One ; 9(9): e105975, 2014.
Article in English | MEDLINE | ID: mdl-25180795

ABSTRACT

The aim of this study was to assess the biological reactions triggered by stem cell transplantation related to phenotypic alteration, host-to-cell response, chromosomal stability, transcriptional alteration, and stem cell-like cell re-expansion. B6CBAF1 mouse embryonic stem cells (ESCs) were injected subcutaneously into homologous or heterologous (B6D2F1) recipients, and heterologous injections were performed with or without co-injection of B6D2F1 fetal fibroblasts. All homologous injections resulted in teratoma formation, whereas a sharp decrease in formation was detected after heterologous injection (100 vs. 14%; p<0.05). The co-injection of somatic cells in heterologous injections enhanced teratoma formation significantly (14 vs. 75%; p<0.05). Next, ESC-like cell colonies with the same genotype as parental ESCs were formed by culturing teratoma-dissociated cells. Compared with parental ESCs, teratoma-derived ESC-like cells exhibited significantly increased aneuploidy, regardless of homologous or heterologous injections. Repopulation of the parental ESCs was the main factor that induced chromosomal instability, whereas the co-injection of somatic cells did not restore chromosomal normality. Different genes were expressed in the parental ESCs and teratoma-derived ESC-like cells; the difference was larger with parental vs. heterologous than parental vs. homologous co-injections. The co-injection of somatic cells decreased this difference further. In conclusion, the host-to-cell interactions triggered by ESC transplantation could be modulated by co-injection with somatic cells. A mouse model using homologous or heterologous transplantation of stem cells could help monitor cell adaptability and gene expression after injection.


Subject(s)
Embryonic Stem Cells/cytology , Neoplastic Stem Cells/pathology , Stem Cell Transplantation , Teratoma/pathology , Animals , Cells, Cultured , Chromosomes, Mammalian/metabolism , Cluster Analysis , Female , Gene Expression Profiling , Gene Ontology , Injections, Subcutaneous , Male , Mice , Molecular Sequence Annotation , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...