Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-37622701

ABSTRACT

BACKGROUND: Pro-inflammatory cytokines secreted from activated macrophages and astrocytes are crucial mediators of inflammation for host defense. Among them, the secretion of IL-1ß, a major pro-inflammatory cytokine, is especially mediated by the activation of NLRP3 inflammasome. Pro-IL-1ß, which is produced in response to the invaded pathogens, such as LPS, is cleaved and matured in the NLRP3 inflammasome by the recognition of ATP. Excessively activated IL-1ß induces other immune cells, resulting in the up-regulation of inflammation. Therefore, regulation of NLRP3 inflammasome can be a good strategy for alleviating inflammation. OBJECTIVE: Our study aimed to examine whether 5-methylthiopentyl isothiocyanate, a sulforaphane analogue (berteroin), has an anti-inflammatory effect on the NLRP3 inflammasome activation induced by LPS and ATP. METHODS: Primary bone marrow-derived macrophages (BMDMs) and astrocytes were stimulated by LPS and ATP with the treatment of 5-methylthiopentyl isothiocyanate, a sulforaphane analogue. The secretion of pro-inflammatory cytokines was measured by ELISA, and the expression level of NLRP3 inflammasome-associated proteins was detected by western blot. The association of NLRP3 inflammasome was assessed by co-immunoprecipitation, and the formation of ASC specks was evaluated by fluorescent microscope. RESULTS: 5-Methylthiopentyl isothiocyanate, a sulforaphane analogue (berteroin), decreased the release of pro-inflammatory cytokines, IL-1ß, and IL-6 in the BMDMs. Berteroin notably prevented the formation of both NLRP3 inflammasome and ASC specks, which reduced the secretion of IL-1ß. Additionally, berteroin reduced the IL-1ß secretion and cleaved IL-1ß expression in the primary astrocytes. DISCUSSION AND CONCLUSION: These results indicated the anti-inflammatory effects of 5-methylthiopentyl isothiocyanate (berteroin) by regulating NLRP3 inflammasome activation, suggesting that berteroin could be the potential natural drug candidate for the regulation of inflammation.

2.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37175965

ABSTRACT

Currently, there are three major assaying methods used to validate in vitro whitening activity from natural products: methods using mushroom tyrosinase, human tyrosinase, and dopachrome tautomerase (or tyrosinase-related protein-2, TRP-2). Whitening agent development consists of two ways, melanin synthesis inhibition in melanocytes and downregulation of melanocyte stimulation. For melanin levels, the melanocyte cell line has been used to examine melanin synthesis with the expression levels of TRP-1 and TRP-2. The proliferation of epidermal surfaced cells and melanocytes is stimulated by cellular signaling receptors, factors, or mediators including endothelin-1, α-melanocyte-stimulating hormone, nitric oxide, histamine, paired box 3, microphthalmia-associated transcription factor, pyrimidine dimer, ceramide, stem cell factors, melanocortin-1 receptor, and cAMP. In addition, the promoter region of melanin synthetic genes including tyrosinase is upregulated by melanocyte-specific transcription factors. Thus, the inhibition of growth and melanin synthesis in gene expression levels represents a whitening research method that serves as an alternative to tyrosinase inhibition. Many researchers have recently presented the bioactivity-guided fractionation, discovery, purification, and identification of whitening agents. Melanogenesis inhibition can be obtained using three different methods: tyrosinase inhibition, copper chelation, and melanin-related protein downregulation. There are currently four different types of inhibitors characterized based on their enzyme inhibition mechanisms: competitive, uncompetitive, competitive/uncompetitive mixed-type, and noncompetitive inhibitors. Reversible inhibitor types act as suicide substrates, where traditional inhibitors are classified as inactivators and reversible inhibitors based on the molecule-recognizing properties of the enzyme. In a minor role, transcription factors can also be downregulated by inhibitors. Currently, the active site copper iron-binding inhibitors such as kojic acid and chalcone exhibit tyrosinase inhibitory activity. Because the tyrosinase catalysis site structure is important for the mechanism determination of tyrosinase inhibitors, understanding the enzyme recognition and inhibitory mechanism of inhibitors is essential for the new development of tyrosinase inhibitors. The present review intends to classify current natural products identified by means of enzyme kinetics and copper chelation to exhibit tyrosinase enzyme inhibition.


Subject(s)
Melanins , Monophenol Monooxygenase , Humans , Melanins/metabolism , Monophenol Monooxygenase/metabolism , Copper/metabolism , Kinetics , Melanocytes/metabolism , Transcription Factors/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Enzyme Inhibitors/pharmacology
3.
Curr Med Chem ; 30(39): 4479-4491, 2023.
Article in English | MEDLINE | ID: mdl-36694324

ABSTRACT

BACKGROUND: The representative symptom of Alzheimer's Disease (AD) has mainly been mentioned to be misfolding of amyloid proteins, such as amyloid-beta (Aß) and tau protein. In addition, the neurological pathology related to neuroinflammatory signaling has recently been raised as an important feature in AD. Currently, numerous drug candidates continue to be investigated to reduce symptoms of AD, including amyloid proteins misfolding and neuroinflammation. OBJECTIVE: Our research aimed to identify the anti-AD effects of two chemical derivatives modified from cromoglicic acid, CNU 010 and CNU 011. METHODS: CNU 010 and CNU 011 derived from cromoglicic acid were synthesized. The inhibitory effects of Aß and tau were identified by thioflavin T assay. Moreover, western blots were conducted with derivates CNU 010 and CNU 011 to confirm the effects on inflammation. RESULTS: CNU 010 and CNU 011 significantly inhibited the aggregation of Aß and tau proteins. Moreover, they reduced the expression levels of mitogen-activated protein (MAP) kinase and nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κB) signaling proteins, which are representative early inflammatory signaling markers. Also, the inhibitory effects on the lipopolysaccharide (LPS)-induced cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) expression referring to late inflammation were confirmed. CONCLUSION: Our results showing multiple beneficial effects of cromolyn derivatives against abnormal aggregation of amyloid proteins and neuroinflammatory signaling provide evidence that CNU 010 and CNU 011 could be further developed as potential drug candidates for AD treatment.


Subject(s)
Alzheimer Disease , Cromolyn Sodium , Humans , Cromolyn Sodium/adverse effects , Neuroinflammatory Diseases , Amyloidogenic Proteins/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , NF-kappa B/metabolism , Inflammation/metabolism , Mitogen-Activated Protein Kinases/metabolism , Microglia/metabolism
4.
Curr Med Chem ; 30(18): 2075-2112, 2023.
Article in English | MEDLINE | ID: mdl-36017851

ABSTRACT

BACKGROUND: Matrix metalloproteinases (MMPs), also known as metalloproteinases, are enzymes that degrade proteins and require the presence of active metal atoms. There are more than 20 types of MMPs, and they promote cell migration through the proteolytic degradation of the extracellular basement. MMPs are upregulated in cancers and inflamed regions. MMPs have three conservation regions: pro-MMP, catalysis, and hemopexin. Through these domains, MMPs cleave matrixes and cell-cell barriers. Consequently, MMPs cleave the whole extracellular matrix (ECM). In other words, they decompose most of the components related to the ECM, in their roles as key enzymes in cellular and pathophysiological events in the body. INTRODUCTION: Zn2+-containing endo-type peptidases directly degrade and remodel the ECM region in the progression of various diseases. MMPs are frequently found in abnormal disease status of inflammatory responses, periodontal lesion, inflammatory pulmonary lesion, arteriosclerotic smooth muscles, arthritis, and tumor metastasis and invasion. They are also known to participate in aging processes-such as wrinkle formation-by destroying collagen in the dermis. In particular, the onset of diseases via the MMP-dependent inflammatory response is caused by the breakdown of proteins in the ECM and the basement membranous region, which are the supporting structures of cells. METHODS: This review describes the developments in the research examining the general and selective inhibitors for MMP associated with various human diseases over the past 20 years in terms of structure remodeling, substrate-recognizing specificities, and pharmacological applicability. RESULTS: Among two similar types of MMPs, MMP-2 is known as gelatinase-A with a 72 kDa, while MMP-9 is termed gelatinase-B with a 92 kDa. Both of these play a key role in this action. Therefore, both enzymatic expression levels coincide during the onset and progression of diseases. Endogenous tissue inhibitors of matrix metalloproteinases (TIMPs) are highly specific for each MMP inhibitor type. The intrinsic factors regulate various MMP types by inhibiting the onset of various diseases mediated by MMP-dependent or independent inflammatory responses. The MMP- 9 and MMP-2 enzyme activity related to the prognosis of diseases associated with the inflammatory response are selectively inhibited by TIMP1 and TIMP2, respectively. The major pathogenesis of MMP-mediated diseases is related to the proliferation of inflammatory cells in various human tissues, which indicates their potential to diagnose or treat these diseases. The discovery of a substance that inhibits MMPs would be very important for preventing and treating various MMP-dependent diseases. CONCLUSION: Considerable research has examined MMP inhibitors, but most of these have been synthetic compounds. Research using natural products as MMP inhibitors has only recently become a subject of interest. This review intends to discuss recent research trends regarding the physiological properties, functions, and therapeutic agents related to MMPs.


Subject(s)
Matrix Metalloproteinase Inhibitors , Neoplasms , Humans , Matrix Metalloproteinase Inhibitors/pharmacology , Matrix Metalloproteinase Inhibitors/therapeutic use , Matrix Metalloproteinase 2/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Extracellular Matrix/metabolism , Gelatinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism
5.
Article in English | MEDLINE | ID: mdl-35692582

ABSTRACT

Oat (Avena sativa L.) is one of the most widely consumed cereal grains worldwide and is considered as an important cereal crop with high nutritional value and potential health benefits. With different bacterial strains, fermented oat extracts were examined for the antioxidant and antiaging effects on the skin after optimization of extraction conditions. Fermented oats contained high avenanthramides, and its function was investigated on matrix metalloproteinase-1 and collagen expression with human dermal fibroblast cells. After fractionation, butanol layers showed the highest avenanthramides contents. Therefore, the microbial fermentation of oats enhances the quality and content of functional ingredients of oats, which provide natural dietary supplements, antioxidants, and antiaging agents.

6.
Antioxidants (Basel) ; 10(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34573086

ABSTRACT

Oats (Avena sativa L.) are rich in protein, fiber, calcium, vitamins (B, C, E, and K), amino acids, and antioxidants (beta-carotene, polyphenols, chlorophyll, and flavonoids). ß-glucan and avenanthramides improve the immune system, eliminate harmful substances from the body, reduce blood cholesterol, and help with dietary weight loss by enhancing the lipid profile and breaking down fat in the body. ß-glucan regulates insulin secretion, preventing diabetes. Progladins also lower cholesterol levels, suppress the accumulation of triglycerides, reduce blood sugar levels, suppress inflammation, and improve skin health. Saponin-based avanacosidase and functional substances of flavone glycoside improve the immune function, control inflammation, and prevent infiltration in the skin. Moreover, lignin and phytoestrogen prevent hormone-related cancer and improve the quality of life of postmenopausal women. Sprouted oats are rich in saponarin in detoxifying the liver. The literatures have been reviewed and the recent concepts and prospects have been summarized with figures and tables. This review discusses recent trends in research on the functionality of oats rather than their nutritional value with individual immunity for self-medication. The oat and its acting components have been revisited for the future prospect and development of human healthy and functional sources.

7.
Int J Mol Sci ; 22(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34360580

ABSTRACT

Melanin causes melasma, freckles, age spots, and chloasma. Anti-melanogenic agents can prevent disease-related hyperpigmentation. In the present study, the dose-dependent tyrosinase inhibitory activity of Avenanthramide (Avn)-A-B-C was demonstrated, and 100 µM Avn-A-B-C produced the strongest competitive inhibition against inter-cellular tyrosinase and melanin synthesis. Avn-A-B-C inhibits the expression of melanogenesis-related proteins, such as TRP1 and 2. Molecular docking simulation revealed that AvnC (-7.6 kcal/mol) had a higher binding affinity for tyrosinase than AvnA (-7.3 kcal/mol) and AvnB (-6.8 kcal/mol). AvnC was predicted to interact with tyrosinase through two hydrogen bonds at Ser360 (distance: 2.7 Å) and Asn364 (distance: 2.6 Å). In addition, AvnB and AvnC were predicted to be skin non-sensitizers in mammals by the Derek Nexus Quantitative Structure-Activity Relationship system.


Subject(s)
Computer Simulation , Melanins/biosynthesis , Melanoma/drug therapy , Monophenol Monooxygenase/antagonists & inhibitors , Skin/drug effects , alpha-MSH/pharmacology , ortho-Aminobenzoates/pharmacology , Hormones/pharmacology , Humans , In Vitro Techniques , Melanoma/metabolism , Melanoma/pathology , Molecular Docking Simulation , Tumor Cells, Cultured
8.
Int J Mol Sci ; 22(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34445273

ABSTRACT

Peptides present in foods are involved in nutritional functions by supplying amino acids; sensory functions related to taste or solubility, emulsification, etc.; and bioregulatory functions in various physiological activities. In particular, peptides have a wide range of physiological functions, including as anticancer agents and in lowering blood pressure and serum cholesterol levels, enhancing immunity, and promoting calcium absorption. Soy protein can be partially hydrolyzed enzymatically to physiologically active soy (or soybean) peptides (SPs), which not only exert physiological functions but also help amino acid absorption in the body and reduce bitterness by hydrolyzing hydrophobic amino acids from the C- or N-terminus of soy proteins. They also possess significant gel-forming, emulsifying, and foaming abilities. SPs are expected to be able to prevent and treat atherosclerosis by inhibiting the reabsorption of bile acids in the digestive system, thereby reducing blood cholesterol, low-density lipoprotein, and fat levels. In addition, soy contains blood pressure-lowering peptides that inhibit angiotensin-I converting enzyme activity and antithrombotic peptides that inhibit platelet aggregation, as well as anticancer, antioxidative, antimicrobial, immunoregulatory, opiate-like, hypocholesterolemic, and antihypertensive activities. In animal models, neuroprotective and cognitive capacity as well as cardiovascular activity have been reported. SPs also inhibit chronic kidney disease and tumor cell growth by regulating the expression of genes associated with apoptosis, inflammation, cell cycle arrest, invasion, and metastasis. Recently, various functions of soybeans, including their physiologically active functions, have been applied to health-oriented foods, functional foods, pharmaceuticals, and cosmetics. This review introduces some current results on the role of bioactive peptides found in soybeans related to health functions.


Subject(s)
Glycine max/chemistry , Peptides , Soybean Proteins , Animals , Humans , Peptides/chemistry , Peptides/therapeutic use , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Soybean Proteins/chemistry , Soybean Proteins/therapeutic use
9.
Int J Mol Sci ; 22(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072216

ABSTRACT

Cheonggukjang (CGJ, fermented soybean paste), a traditional Korean fermented dish, has recently emerged as a functional food that improves blood circulation and intestinal regulation. Considering that excessive consumption of refined salt is associated with increased incidence of gastric cancer, high blood pressure, and stroke in Koreans, consuming CGJ may be desirable, as it can be made without salt, unlike other pastes. Soybeans in CGJ are fermented by Bacillus strains (B. subtilis or B. licheniformis), Lactobacillus spp., Leuconostoc spp., and Enterococcus faecium, which weaken the activity of putrefactive bacteria in the intestines, act as antibacterial agents against pathogens, and facilitate the excretion of harmful substances. Studies on CGJ have either focused on improving product quality or evaluating the bioactive substances contained in CGJ. The fermentation process of CGJ results in the production of enzymes and various physiologically active substances that are not found in raw soybeans, including dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, trypsin inhibitors, and phytic acids. These components prevent atherosclerosis, oxidative stress-mediated heart disease and inflammation, obesity, diabetes, senile dementia, cancer (e.g., breast and lung), and osteoporosis. They have also been shown to have thrombolytic, blood pressure-lowering, lipid-lowering, antimutagenic, immunostimulatory, anti-allergic, antibacterial, anti-atopic dermatitis, anti-androgenetic alopecia, and anti-asthmatic activities, as well as skin improvement properties. In this review, we examined the physiological activities of CGJ and confirmed its potential as a functional food.


Subject(s)
Biological Products , Fermentation , Functional Food , Glycine max , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Food Ingredients , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/pharmacology , Molecular Structure , Nutrition Assessment , Osteogenesis/drug effects , Probiotics , Glycine max/chemistry , Glycine max/metabolism , Glycine max/microbiology
10.
Int J Mol Sci ; 22(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33920015

ABSTRACT

In addition to providing nutrients, food can help prevent and treat certain diseases. In particular, research on soy products has increased dramatically following their emergence as functional foods capable of improving blood circulation and intestinal regulation. In addition to their nutritional value, soybeans contain specific phytochemical substances that promote health and are a source of dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, and phytic acid, while serving as a trypsin inhibitor. These individual substances have demonstrated effectiveness in preventing chronic diseases, such as arteriosclerosis, cardiac diseases, diabetes, and senile dementia, as well as in treating cancer and suppressing osteoporosis. Furthermore, soybean can affect fibrinolytic activity, control blood pressure, and improve lipid metabolism, while eliciting antimutagenic, anticarcinogenic, and antibacterial effects. In this review, rather than to improve on the established studies on the reported nutritional qualities of soybeans, we intend to examine the physiological activities of soybeans that have recently been studied and confirm their potential as a high-functional, well-being food.


Subject(s)
Blood Circulation/drug effects , Dietary Fiber , Fibrinolytic Agents/therapeutic use , Glycine max/chemistry , Blood Pressure/drug effects , Fibrinolytic Agents/chemistry , Humans , Intestines/drug effects , Isoflavones/chemistry , Isoflavones/therapeutic use , Lipid Metabolism/drug effects , Phospholipids/chemistry , Phospholipids/therapeutic use
11.
Front Pharmacol ; 12: 621854, 2021.
Article in English | MEDLINE | ID: mdl-33841150

ABSTRACT

In oat ingredients, flavonoids and phenolic acids are known to be the most important phenolic compounds. In phenolic compounds, wide-ranging biological responses, including antioxidative, anti-inflammatory, anti-allergic, and anti-cancer properties, were reported. Avenanthramide C (Avn C), a component of the phenolic compound of oats, has been reported to be highly antioxidant and anti-inflammatory, but its role in an anti-atherosclerosis response is unknown. The aim of this research was to assess the effect of Avn C on expression of MMP-9 on TNF-α-activated human arterial smooth-muscle cells (HASMC) and signaling involved in its anti-atherosclerosis activity. HASMC cells are known to produce inflammatory cytokines involving IL-6, IL-1ß, and TNF-α during arteriosclerosis activity. Avn C specifically reduced IL-6 secretion in HASMC cells. Furthermore, we investigated whether Avn C could inhibit NF-κB nuclear protein translocation. Avn C suppressed nuclear protein translocation of NF-κB in TNF-α-stimulated HASMCs. The MMP-9 enzyme activity and expression are controlled through the MAPKs signaling path during the Avn C treatment. We confirmed that the levels of wound healing (p-value = 0.013, *p < 0.05) and migration (p-value = 0.007, **p < 0.01) are inhibited by 100 ng/ml TNF-α and 100 µM Avn C co-treated. Accordingly, Avn C inhibited the expression of MMP-9 and cell migration through the MAPK/NF-κB signaling pathway in TNF-α-activated HASMC. Therefore, Avn C can be identified and serve as disease prevention material and remedy for atherosclerosis.

12.
Article in English | MEDLINE | ID: mdl-30941192

ABSTRACT

The purpose of this study was to investigate antihyperlipidemic and antioxidative potentials of onion (Allium cepa L.) extract fermented with a novel Lactobacillus casei HD-010. In general, fermented onion extract is used for its antioxidative activity (ORAC), inhibitory effect on adipocytes differentiation, quercetin contents, and antihyperlipidemic activities. However, the effect of fermented onion extract on hyperlipidemia after oral administration using ApoE-deficient mice has not been reported yet. To understand the effect of fermented onion extract on hyperlipidemia, we used benzafibrate (10 mg/kg, bw/day) as a positive control in the present study. Serum was collected every week to analyze levels of low density lipoprotein (LDL), high density lipoprotein (HDL), triglyceride (TG), and cholesterol, 3-hydroxy-3-methylgutaryi-CoA (HMG-CoA) reductase activity, and cholesterol ester transport protein (CETP) activity. In the fermented onion-treated group, HDL level was significantly increased while levels of TG and LDL were significantly decreased compared to those in the control group. In addition, the inhibition activity of HMG-CoA reductase was increased 20% in the fermented onion-treated group at 100 mg/kg. CETP activity has been observed to be significantly inhibited in the fermented onion-treated groups compared to that in the control group. These results suggest that fermented onion has a preventive/therapeutic effect on hyperlipidemic disease. It might have potential to be developed as a functional food.

13.
Curr Pharm Biotechnol ; 20(3): 222-231, 2019.
Article in English | MEDLINE | ID: mdl-30854954

ABSTRACT

BACKGROUND: Red ginseng is a traditional medicine that has been used to treat numerous metabolic and inflammatory diseases. Probiotic administration has been established to have beneficial effects in non-alcoholic fatty liver disease (NAFLD). The purpose of this study was to determine whether a combination of Korean red ginseng (KRG) and probiotics could synergistically reduce NAFLD and liver inflammation compared with the effects reported for each individual product. METHOD: db/db and C57BL/6 mice were fed a normal chow diet and high-fat diet (HFD), respectively, and were treated with KRG, probiotics, or both. Samples were examined for lipid content, kinase protein phosphorylation, and gene expression patterns. RESULTS: KRG- and probiotic-treated HFD-fed mice exhibited a reduction in body weight and a decrease in inflammatory cytokine secretion compared with the non-treated control mice. The same treatment was less successful in improving NAFLD parameters in the db/db mice while the combination of both products did not enhance their therapeutic potential. CONCLUSION: The results of this study indicate that KRG and probiotics administration ameliorated NAFLD symptoms in a mouse model of dyslipidemia by reducing weight gain and liver inflammation. Coadministration of both products did not enhance their efficacy, and further research should be conducted to clarify their mechanisms of action.


Subject(s)
Ginsenosides/administration & dosage , Lactobacillus , Non-alcoholic Fatty Liver Disease/drug therapy , Panax , Probiotics/administration & dosage , Animals , Ginsenosides/isolation & purification , Lactobacillus/isolation & purification , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Plant Extracts/administration & dosage , Plant Extracts/isolation & purification , Probiotics/isolation & purification
14.
Curr Pharm Biotechnol ; 18(7): 552-559, 2017.
Article in English | MEDLINE | ID: mdl-28685688

ABSTRACT

BACKGROUND: Persicaria is a genus of flowering plants generally used for traditional medicine and nutritional supplements in tropical and subtropical East Asian countries. Previous studies have shown that Persicaria extracts alleviate lipid peroxidation, hypertension, and inflammation. OBJECTIVE: We investigated the anti-oxidative and anti-microbial effects of ethanol extracts of Persicaria nepalensis (Meisn.) Miyabe, and isolated and identified an active compound, MPN-1-1 from the ethanol extracts. RESULTS: Anti-oxidative values, as indicated by the Oxygen Radical Absorbance Capacity (ORAC) assay, were enhanced by treatment with Persicaria nepalensis (Meisn.) Miyabe ethanol extracts, and bacterial growth was inhibited. The active compound (MPN-1-1), which was further isolated and purified from a Persicaria nepalensis (Meisn.) Miyabe ethanol extract by medium pressure liquid chromatography (MPLC), also had strong anti-oxidative and anti-microbial activity. 1H-NMR spectroscopy identified MPN-1-1 as a 1-ethenyl-4,8-dimethoxy-9H-pyrido(3,4-ß) indole compound, which is an alkaloid. CONCLUSION: Our results provide evidence that Persicaria nepalensis (Meisn.) Miyabe extract has strong physiological activity without any toxic effects, and furthermore, MPN-1-1 can be potentially utilized as a natural dietary supplement as well as an anti-oxidant.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Indoles/pharmacology , Plant Extracts/chemistry , Polygonaceae/chemistry , Animals , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/toxicity , Antioxidants/isolation & purification , Antioxidants/toxicity , Biphenyl Compounds/chemistry , Cell Survival/drug effects , Ethanol/chemistry , Female , Indoles/isolation & purification , Lethal Dose 50 , Lipid Peroxidation/drug effects , Male , Medicine, East Asian Traditional , Mice , Microbial Sensitivity Tests , NIH 3T3 Cells , Oxidation-Reduction , Picrates/chemistry , Republic of Korea
15.
J Agric Food Chem ; 64(18): 3564-73, 2016 May 11.
Article in English | MEDLINE | ID: mdl-27087645

ABSTRACT

The antiallergic potential of Arctium lappa L. was investigated in Sprague-Dawley rats, ICR mice, and RBL-2H3 cells. Ethanol extract (90%) of A. lappa (ALE, 100 µg/mL) inhibited the degranulation rate by 52.9%, determined by the level of ß-hexosaminidase. ALE suppressed passive cutaneous anaphylaxis (PCA) in rats and attenuated anaphylaxis and histamine release in mice. To identify the active compound of ALE, we subsequently fractionated and determined the level of ß-hexosaminidase in all subfractions. Oleamide was identified as an active compound of ALE, which attenuated the secretion of histamine and the production of tumor necrosis factor (TNF)-α and interleukin-4 (IL-4) in cells treated with compound 48/80 or A23187/phorbol myristate acetate (PMA). Oleamide suppressed FcεRI-tyrosine kinase Lyn-mediated pathway, c-Jun N-terminal kinases (JNK/SAPK), and p38 mitogen-activated protein kinases (p38-MAPKs). These results showed that ALE and oleamide attenuated allergic reactions and should serve as a platform to search for compounds with antiallergic activity.


Subject(s)
Anti-Allergic Agents/administration & dosage , Arctium/chemistry , Hypersensitivity/drug therapy , Oleic Acids/administration & dosage , Plant Extracts/administration & dosage , Receptors, IgE/immunology , Animals , Anti-Allergic Agents/isolation & purification , Cell Line , Histamine/immunology , Humans , Hypersensitivity/immunology , Interleukin-4/immunology , Male , Mast Cells/drug effects , Mast Cells/immunology , Mice , Mice, Inbred ICR , Mitogen-Activated Protein Kinase Kinases/immunology , Oleic Acids/isolation & purification , Plant Extracts/isolation & purification , Plant Roots/chemistry , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/immunology
16.
Lab Anim Res ; 31(1): 24-32, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25806080

ABSTRACT

Since scalp hair loss has increased recently even in young people, seriously affecting individual's quality of life, the hair growth-stimulating effects of Laminaria japonica extract (LJE) and Cistanche tubulosa extract (CTE) were investigated. After confirming anagen phase of follicles under shaving, male C57BL/6 mice were dermally applied with 3% Minoxidil or orally administered with the combinations of LJE and CTE for 21 days. Minoxidil promoted the hair regrowth and increased γ-glutamyl transpeptidase (γ-GTP) and alkaline phosphatase (ALP) activities. In addition, Minoxidil up-regulated epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) levels. Co-administration of LJE and CTE at 54 mg/kg LJE plus 162 mg/kg CTE exerted synergistic promoting effects on the hair regrowth, comparable to 3% Minoxidil. LJE preferentially enhanced ALP activity, while CTE increased both γ-GTP and ALP activities as well as EGF and VEGF expressions. In vivo air pouch inflammation model, carrageenan-induced vascular exudation and increased nitric oxide and prostaglandin E2 concentrations in the exudates were synergistically suppressed by co-administration of LJE and CTE. In addition, inflammatory cell infiltration was substantially inhibited by the combinational treatment. The results suggest that combinational oral treatment with LJE and CTE in appropriate doses and ratios prevent hair loss and improve alopecia, which might be in part mediated by their anti-inflammatory activities.

17.
Biotechnol Lett ; 26(5): 393-7, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15104136

ABSTRACT

A fibrinolytic enzyme, myulchikinase, from a Korean seasoning ingredient, myul-chi-jeot-gal, has been purified to electrophoretic homogeneity. The molecular mass of the myulchikinase was estimated to about 28 kDa by SDS-PAGE and gel filtration. Amino acid sequence of the NH2-terminal of myulchikinase showed significant homology with other fibrinolytic enzymes including trypsin from starfish, katsuwokinase, and rat pancreatic elastase II. The purified myulchikinase hydrolyzed various synthetic substrates with different substrate specificity and cytotoxic to the tumor cell lines.


Subject(s)
Cell Survival/drug effects , Endopeptidases/isolation & purification , Endopeptidases/pharmacology , Fishes/metabolism , Neoplasms/pathology , Amino Acid Sequence , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Breast/drug effects , Breast/pathology , Cell Line, Tumor/drug effects , Dose-Response Relationship, Drug , Endopeptidases/chemistry , Enzyme Activation , Epithelial Cells/drug effects , Epithelial Cells/pathology , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/isolation & purification , Fibrinolytic Agents/pharmacology , Fixatives/chemistry , Humans , K562 Cells , Lymphoma/pathology , Mice , Molecular Sequence Data , Molecular Weight , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...