Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Food Chem ; 459: 140339, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38986206

ABSTRACT

A facile, fast and visible sensing platform for ascorbic acid (AA) detection has been developed based on self-assembled hydrangea-like europium metal-organic framework (HL-EuMOF). HL-EuMOF was synthesized through a simple one-step mixing process with Eu3+ and 1, 10-phenanthroline-2, 9-dicarboxylic acid at room temperature, which exhibited excellent properties including strong red fluorescence, long decay lifetime (548.623 µs) and good luminescent stability. Based on the specific redox reaction between Fe3+ and AA, the HL-EuMOF@Fe3+ was fabricated with "turn-off" response for AA, where the resulting Fe2+ displayed effective fluorescence quenching ability toward HL-EuMOF. The sensor demonstrated low detection limit (31.94 nM), rapid response time (30 s) and high selectivity. Integration of smartphone-assisted RGB analysis with HL-EuMOF@Fe3+ permitted convenient and visible quantitative determination of AA level. This approach also presented good detection performances in complex human serum and beverage samples, which could provide a valuable tool for AA detection in biomedical research and food industry.

2.
Talanta ; 278: 126445, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908139

ABSTRACT

A near-infrared fluorescent "turn on" probe DTMI featuring simple skeleton was constructed easily. It undergoes a structure transformation from an A-π-A to a D-π-A framework towards SO32-. Besides, DTMI is capable of distinctive sensing sulfite with a fast response and a significant Stokes shift as well as with high sensitivity, excellent selectivity, long-term stability of fluorescence signals, and good anti-interference ability. The detection limit (LOD) of DTMI for sulfite within the linear concentration range of 0.5-10 µM is 27.39 nM. More importantly, DTMI has been favorably utilized for detecting sulfite in food samples such as red wine and vermicelli. Based on its low biotoxicity, DTMI has been successfully applied in imaging experiments involving HeLa cells, onion inner epidermal cells, and zebrafish. Therefore, the results show that the presented probe possesses potential sensing activity towards sulfite in complex biological system and food samples.

3.
Microchem J ; 1972024 Feb.
Article in English | MEDLINE | ID: mdl-38283367

ABSTRACT

A sensitive chemiluminescent enzyme immunoassay (CLEIA) was established for the determination of gentamicin (GEN) residue levels in animal tissue. This assay is based on a fusion protein of single-chain variable fragment (scFv) and alkaline phosphatase (AP). Initially, VL and VH derived from anti-gentamicin monoclonal antibody were linked by a short peptide to construct a scFv. Subsequently, the constructed scFv sequence was accessed into the pLIP6/GN vector, and a soluble scFv-AP fusion protein was generated. The scFv-AP fusion protein was used to develop a direct competitive CLEIA (dcCLEIA) for the determination of gentamicin. In the dcCLEIA, the half inhibitory concentration (IC50) and limit of detection (LOD) were 1.073 ng/mL and 0.380 ng/mL, respectively. The average recoveries of gentamicin spiked in animal tissue samples ranged from 78% to 96%. These results showed a strong correlation with ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The above results suggest that the anti-GEN scFv-AP fusion protein is suitable for detecting gentamicin residues in edible animal tissues.

4.
Anal Biochem ; 667: 115087, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36858251

ABSTRACT

Reduced graphene oxide-gold nanoparticles nanocomposites (rGO-AuNPs) with high surface-enhanced Raman scattering (SERS) activity was created by biomass-assisted green synthesis with Lilium casa blanca petals biomass for the first time, and its application for methylene blue (MB) degradation was explored through in-situ monitoring. Lilium casa blanca petals biomass was used as a reducing agent to reduce GO and chloroauric acid successively when carrying out rGO-AuNPs in-situ synthesis while it also acted as a capping agent. The produced rGO had oxygen-containing functional groups which had an outstanding performance in enhancing the SERS effect. Characterization results confirmed that the AuNPs were grafted onto the rGO sheet, and the mechanism study showed that total flavonoids in Lilium casa blanca petals biomass were the main biological compounds involved in the reduction. rGO-AuNPs had a high Raman enhancement factor (EF) which could reach 3.88 × 107. The synthesized nanocomposite also had a good catalytic activity that could be employed as catalyst in MB degradation, and it could complete degradation within 15min. The reaction rate increased linearly with the amount of rGO-AuNPs, and the degradation could be in-situ monitored both by UV and SERS.


Subject(s)
Graphite , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Methylene Blue , Spectrum Analysis, Raman/methods , Biomass , Graphite/chemistry
5.
Biosens Bioelectron ; 220: 114906, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36402099

ABSTRACT

Nanobody(Nb) is too small to carry more signal reporters, which often leads to low sensitivity in immunoassay. Herein, we proposed a novel immunoprobe integration of Nb and biomimetic mineralized metal-organic frameworks(MOF), in which plenty of succinylated horseradish peroxidase(sHRP) were encapsulated within a single MOF and the Nb was assembled on the biomimetic mineralized MOF. It overcomes the dilemma that the Nb is difficult to carry more signal reporters. Meanwhile, the mineralized MOF can protect the sHRP from denaturation and facilitate the transport of substrates to the active sites of sHRP. Electrosensing of aflatoxin B1(AFB1) was realized with a competitive format in which the target AFB1 and immobilized artificial antigen were competing for binding with the immunoprobe. Additionally, the detection signal was enlarged by the catalysis of this immunoprobe to 4-chloro-1-naphthol for producing precipitations, which blocked the channels of the immunoprobe and the redox probes of Fe(CN)63-/4- was difficult to reach the electrode surface through the channels. Hence, the as-prepared immunosensor exhibited good voltammetry responses towards the determined AFB1 in a linear range of 50.0 fg/mL - 20.0 ng/mL with a detection limit of 20.0 fg/mL. The specificity, stability, and reproducibility of this immunosensor were satisfactory. This work may provide an alternative idea for the application of Nb in immunoassay, and the idea may also be applicable to other bio-recognition elements for immunoassay.


Subject(s)
Aflatoxin B1 , Biosensing Techniques , Biomimetics , Immunoassay , Reproducibility of Results
6.
Food Chem ; 400: 134067, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36084594

ABSTRACT

To determine gentamicin residues in animal tissues, a monoclonal antibody (Mab) was produced and a sensitive indirect competitive chemiluminescent enzyme immunoassay (icCLEIA) was developed. At first, gentamicin was conjugated with bovine serum albumin as immunogens which were used to immunize BALB/c mice. Then, an anti-gentamicin Mab was prepared by hybridoma technology. Finally, a sensitive icCLEIA was developed with an 50% inhibition concentration (IC50) of 0.067 ng/mL for gentamicin. The limit of detection of the icCLEIA was 0.002 ng/mL. The cross reactivity of the Mab with structural analogues were<0.01%. The recoveries of gentamicin ranged from 80 to 101% and coefficient of variation was <6.4% in pork and fish samples. Samples were detected by UPLC-MS/MS for evaluating reliability of the icCLEIA. The results suggested that the prepared anti-gentamicin Mab can be used for rapid and convenient immunoassays to detect gentamicin residues in animal tissues.


Subject(s)
Antibodies, Monoclonal , Gentamicins , Animals , Chromatography, Liquid , Enzyme-Linked Immunosorbent Assay/methods , Immunoassay/methods , Immunoenzyme Techniques , Luminescence , Mice , Mice, Inbred BALB C , Reproducibility of Results , Serum Albumin, Bovine , Tandem Mass Spectrometry
7.
Anal Methods ; 14(23): 2266-2276, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35621162

ABSTRACT

In the present study, a novel simple and sensitive method was developed for the determination of pectin based on the decarboxylation derivatization reaction and surface-enhanced Raman scattering (SERS) without complicated separation steps. The derivatization reaction can be controlled by the experimental parameters such as reaction time, temperature and the amount of hydrochloric acid. Additionally, the method was used to accurately and reliably detect pectin added in honey or apple, which can be detected at levels as low as 0.5 or 0.01 ppm, respectively. Based on the conventional decarboxylation reaction, a simple and sensitive SERS method was proposed for the detection of pectin, which shows potential for practical application.


Subject(s)
Honey , Malus , Decarboxylation , Malus/chemistry , Pectins , Spectrum Analysis, Raman
8.
Anal Bioanal Chem ; 414(2): 1129-1139, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34719746

ABSTRACT

A label-free electrochemical immunosensor has advantages of real-time and rapid detection, but it is weak in detection of small molecular toxins such as aflatoxin B1 (AFB1). The greatest obstacle to achieving this is that small molecules bound to a common immunosensing interface cannot interfere with electron transfer effectively and the detection signal is so weak. Therefore, a sensitive electrochemical immunosensing interface for small molecules is urgently needed. Here, we employed functionalized black phosphorene (BP) as electrode modification materials and anti-AFB1 nanobody (Nb) as a biorecognition element to construct a very sensitive immunosensing interface towards small molecular AFB1. The BP functionalized by carboxylic multi-walled carbon nanotubes (MWCNTs-COOH) via P-C bonding behaved with a satisfactory stability and good catalytic performance for the ferricyanide/ferrocyanide probe, while the small-sized Nb showed good compatibility with the functionalized BP and also had less influence on electron transfer than monoclonal antibody (mAb). Expectedly, the as-prepared immunosensing interface was very sensitive to AFB1 detection by differential pulse voltammetry (DPV) in a redox probe system. Under optimized conditions, a linear range from 1.0 pM to 5.0 nM and an ultralow detection limit of 0.27 pM were obtained. Additionally, the fabricated immunosensor exhibited satisfactory stability, specificity, and reproducibility. The strategy proposed here provides a more reliable reference for label-free sensing of small molecules in food samples.


Subject(s)
Aflatoxin B1/analysis , Electrochemical Techniques/methods , Phosphorus Compounds/chemistry , Single-Domain Antibodies/chemistry , Biosensing Techniques/methods , Limit of Detection
9.
Bioorg Chem ; 115: 105212, 2021 10.
Article in English | MEDLINE | ID: mdl-34333423

ABSTRACT

Eighteen derivatives of pentacyclic triterpene carboxylic acids (Maslinic acid, Corosolic acid and Asiatic acid) have been prepared by coupling the piperazine complex of l-amino acids at the C-28 site of the parent compounds. The α-glucosidase inhibitory activities of the pristine derivatives were evaluated in vitro. The results indicated that the inhibitory activity of some compounds (15e IC50 = 591 µM, 16e IC50 = 423 µM) was closed to that of the reference acarbose (IC50 = 347 µM) in ethanol-water system. In addition, compound 16e (IC50 = 380 µM) showed superior inhibitory activity than acarbose (IC50 = 493 µM) in the measurement system with DMSO as solvent. The comparison of two different solvent systems showed that the derivatives had better α-glucosidase inhibitory activity in the DMSO system than that of in ethanol-water system. Regrettably, all of the as-synthesized derivatives exhibited inferior α-glucosidase inhibitory activities than those of the parent compounds in both test solvent systems. Furthermore, the result of enzyme kinetics demonstrated that the inhibition mechanism of compound 16e was noncompetitive inhibition with the inhibition constant Ki = 552 µM.


Subject(s)
Amino Acids/pharmacology , Carboxylic Acids/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Pentacyclic Triterpenes/pharmacology , Piperazine/pharmacology , alpha-Glucosidases/metabolism , Amino Acids/chemistry , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Humans , Molecular Structure , Pentacyclic Triterpenes/chemical synthesis , Pentacyclic Triterpenes/chemistry , Piperazine/chemistry , Structure-Activity Relationship
10.
Bioorg Chem ; 97: 103694, 2020 04.
Article in English | MEDLINE | ID: mdl-32120080

ABSTRACT

Combining two bioactive moieties by covalent bond into a novel single hybrid biological entity in view of the principle of active splicing, twenty-two C28-modified derivatives of pentacyclic dihydroxytriterpene carboxylic acids with saturated nitrogen heterocycle segments (i.e. 1-deoxynojirimycin or piperazines) have been synthesized. The inhibitory activities of all final target compounds on α-glucosidase were evaluated in vitro. The results of α-glucosidase inhibition assay indicate that some derivatives (e.g. 4b: IC50 = 1468.4 µM; 12b: IC50 = 499.6 µM 12c: IC50 = 768.5 µM, 13c: IC50 = 819.2 µM) show superior inhibitory activity in α-glucosidase than that of the precursor maslinic acid (IC50 = 2540.6 µM) or corosolic acid (IC50 = 1363.7 µM), in which compound 12b (IC50 = 499.6 µM) possesses stronger inhibitory activity than that of acarbose (IC50 = 606 µM). In addition, the result of enzyme kinetics study reveals that the inhibitory mechanism of the compound 12b is non-competitive inhibition and the inhibition constant Ki is 570 µM. The binding interaction between compounds with α-glucosidase are predicted by molecular docking simulation.


Subject(s)
Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Triterpenes/chemistry , Triterpenes/pharmacology , Chemistry Techniques, Synthetic , Glycoside Hydrolase Inhibitors/chemical synthesis , Humans , Models, Molecular , Molecular Docking Simulation , Saccharomyces cerevisiae/enzymology , Triterpenes/chemical synthesis , alpha-Glucosidases/metabolism
11.
Bioorg Chem ; 86: 277-287, 2019 05.
Article in English | MEDLINE | ID: mdl-30735848

ABSTRACT

Twenty maslinic acid and corosolic acid derivatives were obtained by coupling with l-amino acids at C-28 position. The α-glucosidase inhibitory activities of the present compounds were evaluated in vitro. Results reveal that some of the derivatives exhibit a better α-glucosidase inhibitory activity than that of acarbose in the test conditions of ethanol-water solution and DMSO. It is worth noting that maslinic acid and corosolic acid derivatives coupled aspartic acid (9f: IC50 = 382 µm and 10f: IC50 = 364 µm, respectively) have the best water solubility and thus presented higher inhibitory activity than that of acarbose (IC50 = 484 µm). Unfortunately, all of the derivatives possess lower inhibitory properties of α-glucosidase than those of the parent compounds in the measurement system of DMSO solution, even if the derivatives exhibit better water solubility than that of the parent compounds.


Subject(s)
Amino Acids/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Triterpenes/pharmacology , alpha-Glucosidases/metabolism , Amino Acids/chemistry , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Humans , Molecular Conformation , Solubility , Structure-Activity Relationship , Triterpenes/chemical synthesis , Triterpenes/chemistry , Water/chemistry
12.
Protein Expr Purif ; 84(1): 140-6, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22609338

ABSTRACT

Furaltadone is an illicit veterinary drug that shows toxic, carcinogenic, and mutagenic effects, as does its metabolite 3-amino-5-morpholinomethyl-2-oxazolidone (AMOZ)(1). Recombinant antibodies with desirable affinity and specificity that can replace polyclonal or monoclonal antibodies are important factors for effective AMOZ immunoassays. In the present study, a novel single-chain variable fragment (scFv) antibody against the 2-nitrobenzaldehyde derivative of AMOZ (NPAMOZ) was prepared and characterized. The scFv gene was cloned into the pET-22b(+) expression vector, and 6His-tagged scFv antibodies expressed as inclusion bodies in Escherichia coli BL21 (DE3), which were then purified by nickel nitrilotriacetic acid column chromatography. Characterization of the target protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blotting, and a novel indirect competitive chemiluminescence enzyme immunoassay (icCLEIA) showed that the scFv antibody was ∼27kDa and exhibited HRP-anti-His-tag antibody-recognized activity. The final purity, yield and mg of this scFv antibody after ultrafiltration concentration were 97%, 20% and 29.1mg, respectively. The icCLEIA indicated that the antibody competitively combined with NPAMOZ, exhibiting an IC(50) value of 1.46±0.01 ng/ml (n=6). Cross-reactivity studies revealed that the antibody showed desirable specificity to NPAMOZ and little reactivity to analogs except the parent furaltadone. In summary, these findings suggested that the prepared recombinant scFv antibody can be used for future immunoassay screening for AMOZ.


Subject(s)
Benzaldehydes/chemistry , Benzaldehydes/immunology , Escherichia coli/genetics , Nitrofurans/metabolism , Oxazolidinones/metabolism , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/immunology , Animals , Cloning, Molecular , Histidine/genetics , Histidine/metabolism , Immunoenzyme Techniques/methods , Mice , Nitrofurans/analysis , Nitrofurans/chemistry , Oligopeptides/genetics , Oligopeptides/metabolism , Oxazolidinones/analysis , Oxazolidinones/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...