Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 941: 173723, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38839011

ABSTRACT

Due to the wide application in industries, copper can be detected in some nitrogen-rich wastewater. In this research, short-term and long-term experiments were conducted to explore the effects of Cu(II) on the anammox-denitrification couple system. It concluded that the half inhibition concentration (IC50) of Cu(II) was 35.54 mg/L. The system in reactor could tolerate low concentrations of Cu(II) (≤5 mg/L), while the total nitrogen removal efficiency decreased from 93 % to 33 % under 10 mg/L of Cu(II). After 45 days exposure to Cu(II) (1-10 mg/L), 14.54 mg/g SS copper accumulated in the sludge, which largely inhibited the microbial activity. More extracellular polymeric substances (EPS) were secreted to defend against copper toxicity. Proteobacteria (19.18 %-44.04 %) was the dominant phylum and showed excellent tolerance and adaptability to Cu(II). The dominant anammox bacteria, Candidatus_Brocadia, was slightly enhanced under low concentrations of Cu(II), but was highly inhibited under 10 mg/L of Cu(II). PICRUSt2 results showed that some metabolic activities were suppressed under the exposure of copper while defensive responses were also induced. Metabolic disorders eventually led to the death of some microbes, resulting in unrecoverable deterioration in microbial activity. Overall, this study explores the effect of Cu(II) on the anammox-denitrification process and provides a possible inhibition mechanism.


Subject(s)
Bioreactors , Copper , Denitrification , Nitrogen , Waste Disposal, Fluid , Water Pollutants, Chemical , Waste Disposal, Fluid/methods , Wastewater/chemistry , Bacteria/metabolism , Bacteria/drug effects , Anaerobiosis
2.
Bioresour Technol ; 399: 130638, 2024 May.
Article in English | MEDLINE | ID: mdl-38548030

ABSTRACT

Chlorella sp. and Navicula sp. were separately used to construct an algal-bacterial symbiotic system in two identical sequencing batch reactors (R1 and R2) to explore the influence of algal species differences on nitrite accumulation. The Navicula-bacterial symbiotic system showed a higher nitrite accumulation efficiency of 85% and a stronger resistance to ammonia load. It secreted twice as many extracellular polymeric substances than the Chlorella-bacterial symbiotic system. Nitrospira and SM1A02 were the dominant functional genera of nitrite-oxidizing bacteria in R1. The dominant functional genus of ammonium-oxidizing bacteria and the dominant functional genus of denitrifying bacteria were Ellin6067 and unclassified_Saprospiraceae in R2, respectively. In general, this research provided some reference for the construction of an algal-bacterial symbiotic system and achieving nitrite accumulation through an algal-bacterial symbiotic system.


Subject(s)
Chlorella , Microbiota , Wastewater , Nitrification , Nitrites , Nitrogen/analysis , Bacteria , Ammonia , Bioreactors/microbiology
3.
J Environ Manage ; 338: 117821, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37001425

ABSTRACT

This study aimed to start up the completely autotrophic nitrogen removal over nitrite (CANON) process after adding partial nitration (PN) sludge to the ANAMMOX reactor, so as to help the rapid start-up and stable operation of the CANON process in practical engineering applications. There were three steps in the research: cultivating the PN sludge, building a reliable ANAMMMOX system, and finally starting and running the CANON process. The PN sludge was successfully cultivated in less than 45 days with around 90% nitrite accumulation rate. The ANAMMOX reactor enriched a significant quantity of red granular sludge within 70 days, achieving the maximum nitrogen removal rate of 1.74 kg/(m3·d). Eventually, the CANON reactor was started up successfully, which achieved 95.08% of average ammonium removal efficiency and 84.51% of average total nitrogen removal efficiency in 60 days. The residual recalcitrant nitrite-oxidizing bacteria in the CANON process was successfully inhibited by intermittent aeration and 12 mg/L free ammonia in UASB reactor. Besides, Candidatus Kuenenia, Candidatus Brocadia and Nitrosomonas were the main functional microorganisms involved in the CANON process.


Subject(s)
Nitrites , Sewage , Nitrogen , Anaerobic Ammonia Oxidation , Bioreactors/microbiology , Oxidation-Reduction , Denitrification
4.
Bioresour Technol ; 363: 127901, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36075349

ABSTRACT

Sulfur autotrophic denitrifiers and heterotrophic denitrifiers widely exist in aquatic ecosystem, however, the response of sulfide to the microbial community structure in mixotrophic denitrification ecosystem is unknown yet. In this study, the denitrification performance and microbial community were explored by changing the molar ratio of influent C/N/S. From the level of genus, the joint action of Thauera, Pacacoccus, Fusibacter Pseudoxanthomonas, Thiobacillus, Sulfurovum and Sulfurimonas brought about the efficient denitrification performance in the mixotrophic system. Thauera increased from from 0.97% to more than 13%, and the relative abundances of Thiobacillus and Sulfurimonas were about 4.14% and 3.89% separately after adding S2-. The results of this study showed that the denitrification performance could be indeed intensified in the mixotrophic system, among which provided a theoretical basis for establishing an efficient biological nitrogen removal system.


Subject(s)
Microbiota , Thiobacillus , Autotrophic Processes , Bioreactors , Denitrification , Nitrates , Nitrogen , Sulfides , Sulfur , Thauera
5.
Int J Biol Macromol ; 191: 1006-1016, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34592226

ABSTRACT

Corneal transplantation is an effective treatment for corneal blindness. However, it brings risk factors for the occurrence of bacterial keratitis, which can affect the repair effect and even lead to transplantation failure. The difficulty in re-epithelialization is also a main problem faced by corneal transplantation. Herein, a collagen-GelMA composite membrane containing lysozyme (CGL) was developed as an antibacterial corneal implant to fill stromal defect and support re-epithelialization. Characterizations of physicochemical properties and in vitro biocompatibility revealed that the composite membranes have proper water content, light transmittance and mechanical strength as well as good biocompatibility. Particularly, the cell adhesion force and adhesion-related genes expression were evaluated and exhibited an improvement after the addition of GelMA. Furthermore, the formed CGL membrane could continuously release lysozyme and exhibited a bactericidal rate of 96% and 64% after 2 h and 72 h, respectively. The results demonstrated that this CGL membrane has promising application in corneal repair.


Subject(s)
Anti-Bacterial Agents/chemistry , Collagen/chemistry , Corneal Transplantation/methods , Membranes, Artificial , Muramidase/chemistry , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Cell Adhesion , Cells, Cultured , Corneal Transplantation/instrumentation , Cross-Linking Reagents/chemistry , Drug Liberation , Epithelium, Corneal/drug effects , Epithelium, Corneal/physiology , Muramidase/administration & dosage , Muramidase/pharmacology , Rabbits , Staphylococcus aureus/drug effects
6.
ACS Omega ; 5(1): 674-682, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31956817

ABSTRACT

The emergence of innovative surgical procedures using partial thickness corneal transplant has created a need for the development of corneal grafts to replace pathologic corneal tissue. Corneal repair materials have been successfully prepared in the past 10 years, but they were difficult to be used in clinics because of the unbearable tension caused by interrupted suture during routine surgery. However, polycaprolactone (PCL), a medical polymer material, can solve this problem. Therefore, a hierarchical collagen (Col)-based corneal graft with curvature, consisting of a transparent core part composed of collagen in the center and a mechanically robust fixed part containing collagen and polycaprolactone in the edge, was used as a potential corneal graft for corneal repair and regeneration in this study. The hierarchical collagen-based corneal grafts [collagen-polycaprolactone (Col-PCL) membranes] that are capable of mimicking the native cornea were developed based on chemical and thermal crosslinking mechanisms. The water adsorption of Col-PCL membranes could reach over 80% similar to that of human cornea, and its swelling could reach over 400%. More importantly, the formed Col-PCL membranes could resist a larger tensile strength (1.1 ± 0.03 MPa) before rupturing in comparison with pure collagen membranes and polycaprolactone membranes. Furthermore, the biodegradable Col-PCL membranes could facilitate cell adhesion and proliferation as well as cell migration (exhibiting epithelial wound coverage in <5 days), which showed promise as corneal grafts for cornea tissue engineering.

7.
Sci Rep ; 3: 1522, 2013.
Article in English | MEDLINE | ID: mdl-23519311

ABSTRACT

Accurate prediction of where and when typhoons (or named hurricanes which form over the North Atlantic Ocean) will make landfall is critical to protecting human lives and properties. Although the traditional method of typhoon track prediction based on the steering flow theory has been proven to be an effective way in most situations, it slipped up in some cases. Our analysis of the long-term Chinese typhoon records reveals that typhoons, especially super typhoons (those with maximum sustained surface winds of greater than 51 ms(-1)), have a trend to make landfalls toward warmer land in China over the past 50 years (1960-2009). Numerical sensitivity experiments using an advanced atmospheric model further confirm this finding. Our finding suggests an alternative approach to predict the landfall tracks of the most devastating typhoons in the southeastern China.


Subject(s)
Climate , Cyclonic Storms , Models, Theoretical , Atlantic Ocean , Atmosphere , China , Humans , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...