Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Vet Sci ; 11: 1395718, 2024.
Article in English | MEDLINE | ID: mdl-38881785

ABSTRACT

According to previous studies, the quality and fertilization rate of fresh sperm from boars of different ages were significantly different. However, the difference of freeze-thaw sperm quality and fertility in boars of different ages is unclear. In this study, boars of a Chinese native breed were assigned into two groups. Each group consisted of five boars aged aged either 2-3 years (young boars = YB) or 5-6 years (aging boars = AB) A total of 60 ejaculates for each group were collected and cryopreserved. Semen quality and in vitro fertility of post-thaw sperm was evaluated. The results showed that the concentration and motility of fresh sperm collected from AB were similar to YB, but their semen volume was higher than that in YB (p < 0.05). Frozen-thawed sperm of AB had lower viability than YB, and higher abnormal rate and reactive oxygen species (ROS) levels of YB (p < 0.05). There was no effect of the age on post-thaw sperm motility and time survival. Functional assessments indicated that increasing age markedly compromises the integrity of the sperm plasma membrane and acrosome, as well as mitochondrial functionality post-thaw, albeit without affecting DNA integrity. Furthermore, increasing age of boars reduces the ability of sperm to bind to the oocyte zona pellucida after thawing, delaying the time of the first embryo cleavage after fertilization. Finally, the early developmental efficiency of in vitro fertilized embryos progressing from 4-cell to blastocyst derived from post-thaw sperm in AB significantly decreased compared to those from YB (p < 0.05). Taken together, these results suggest that increasing age in boars impairs the quality and in vitro fertility of frozen thawed sperm.

2.
Proc Natl Acad Sci U S A ; 114(3): E297-E306, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28039433

ABSTRACT

Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residues from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of-but adjacent to-the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Receptor, trkA/antagonists & inhibitors , Receptor, trkA/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Kinetics , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/chemical synthesis , Receptor, trkA/genetics , Receptor, trkB/antagonists & inhibitors , Receptor, trkB/chemistry , Receptor, trkB/genetics , Receptor, trkC/antagonists & inhibitors , Receptor, trkC/chemistry , Receptor, trkC/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/drug effects , Recombinant Proteins/genetics , Structure-Activity Relationship , Surface Plasmon Resonance
3.
J Med Chem ; 59(5): 1818-29, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26871940

ABSTRACT

A potent and selective Factor IXa (FIXa) inhibitor was subjected to a series of liver microsomal incubations, which generated a number of metabolites. Using automated ligand identification system-affinity selection (ALIS-AS) methodology, metabolites in the incubation mixture were prioritized by their binding affinities to the FIXa protein. Microgram quantities of the metabolites of interest were then isolated through microisolation analytical capabilities, and structurally characterized using MicroCryoProbe heteronuclear 2D NMR techniques. The isolated metabolites recovered from the NMR experiments were then submitted directly to an in vitro FIXa enzymatic assay. The order of the metabolites' binding affinity to the Factor IXa protein from the ALIS assay was completely consistent with the enzymatic assay results. This work showcases an innovative and efficient approach to uncover structure-activity relationships (SARs) and guide drug design via microisolation-structural characterization and ALIS capabilities.


Subject(s)
Automation , Drug Design , Factor IXa/antagonists & inhibitors , Fibrinolytic Agents/pharmacology , Nuclear Magnetic Resonance, Biomolecular , Animals , Dose-Response Relationship, Drug , Factor IXa/metabolism , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/metabolism , Humans , Ligands , Molecular Structure , Rats , Structure-Activity Relationship
4.
Comb Chem High Throughput Screen ; 15(6): 473-85, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22651846

ABSTRACT

Affinity selection-mass spectrometry (AS-MS) is a sensitive technology for identifying small molecules that bind to target proteins, and assays enabled by AS-MS can be used to delineate relative binding affinities of ligands for proteins. 'Indirect' AS-MS assays employ size-exclusion techniques to separate target-ligand complexes from unbound ligands, and target-associated ligands are then specifically detected by liquid chromatography mass spectrometry. We report how indirect AS-MS binding assays with known reference control compounds were used as guideposts for development of an optimized purification method for CXCR4, a G-protein coupled chemokine receptor, for which we sought novel antagonists. The CXCR4 purification method that was developed was amenable to scale-up and enabled the screening of purified recombinant human CXCR4 against a large combinatorial library of small molecules by high throughput indirect AS-MS. The screen resulted in the discovery of new ligands that competed off binding of reference compounds to CXCR4 in AS-MS binding assays and that antagonized SDF1α-triggered responses and CXCR4-mediated HIV1 viral uptake in cell-based assays. This report provides a methodological paradigm whereby indirect AS-MS-based ligand binding assays may be used to guide optimal integral membrane protein purification methods that enable downstream affinity selection-based applications such as high throughput AS-MS screens.


Subject(s)
High-Throughput Screening Assays/methods , Mass Spectrometry/methods , Receptors, CXCR4/isolation & purification , Receptors, CXCR4/metabolism , Cell Line, Tumor , Chemokine CXCL12/metabolism , Humans , Ligands , Protein Binding , Receptors, CXCR4/antagonists & inhibitors
5.
ACS Med Chem Lett ; 3(2): 123-8, 2012 Feb 09.
Article in English | MEDLINE | ID: mdl-24900442

ABSTRACT

A novel series of CHK1 inhibitors with a distinctive hinge binding mode, exemplified by 2-aryl-N-(2-(piperazin-1-yl)phenyl)thiazole-4-carboxamide, was discovered through high-throughput screening using the affinity selection-mass spectrometry (AS-MS)-based Automated Ligand Identification System (ALIS) platform. Structure-based ligand design and optimization led to significant improvements in potency to the single digit nanomolar range and hundred-fold selectivity against CDK2.

6.
J Lipid Res ; 52(4): 646-56, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21296956

ABSTRACT

Fatty acid binding protein-4 (FABP4) and FABP5 are two closely related FA binding proteins expressed primarily in adipose tissue and/or macrophages. The small-molecule FABP4 inhibitor BMS309403 was previously reported to improve insulin sensitivity in leptin-deficient Lep(ob)/Lep(ob) (ob/ob) mice. However, this compound was not extensively characterized in the more physiologically relevant animal model of mice with diet-induced obesity (DIO). Here, we report the discovery and characterization of a novel series of FABP4/5 dual inhibitors represented by Compounds 1-3. Compared with BMS309403, the compounds had significant in vitro potency toward both FABP4 and FABP5. In cell-based assays, Compounds 2 and 3 were more potent than BMS309403 to inhibit lipolysis in 3T3-L1 adipocytes and in primary human adipocytes. They also inhibited MCP-1 release from THP-1 macrophages as well as from primary human macrophages. When chronically administered to DIO mice, BMS309403 and Compound 3 reduced plasma triglyceride and free FA levels. Compound 3 reduced plasma free FAs at a lower dose level than BMS309403. However, no significant change was observed in insulin, glucose, or glucose tolerance. Our results indicate that the FABP4/5 inhibitors ameliorate dyslipidemia but not insulin resistance in DIO mice.


Subject(s)
Dietary Fats/adverse effects , Fatty Acid-Binding Proteins/antagonists & inhibitors , Hypolipidemic Agents/therapeutic use , Neoplasm Proteins/antagonists & inhibitors , Obesity/drug therapy , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Cells, Cultured , Chemokine CCL2/metabolism , Dyslipidemias/chemically induced , Dyslipidemias/drug therapy , Fatty Acids, Nonesterified/blood , Insulin Resistance , Lipolysis/drug effects , Macrophages/drug effects , Macrophages/metabolism , Mice , Obesity/chemically induced , Triglycerides/blood
7.
ACS Med Chem Lett ; 2(8): 632-7, 2011 Aug 11.
Article in English | MEDLINE | ID: mdl-24900358

ABSTRACT

A novel series of non-ATP-competitive MK2 inhibitors based on a furan-2-carboxyamide scaffold was discovered through high-throughput screening using the affinity selection-mass spectrometry-based Automated Ligand Identification System platform. Medicinal chemistry efforts optimized the initial screening hit to leadlike compounds with significant improvements in biochemical and cellular potencies, while maintaining excellent kinase selectivity and in vitro pharmacokinetic properties. Biophysical and biochemical studies confirmed the unique non-ATP-competitive binding mode of this series and suggested that highly selective inhibitors of MK2 should be feasible by targeting the outside ATP pocket.

8.
Curr Opin Chem Biol ; 11(5): 518-26, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17931956

ABSTRACT

Affinity selection-mass spectrometry (AS-MS) techniques assess the binding of candidate molecules to immobilized or soluble receptors, and these methods are gaining acceptance in high throughput screening laboratories as valuable complements to traditional drug discovery technologies. A diversity of receptor types have been evaluated by AS-MS, including those that are difficult to screen using traditional biochemical approaches. AS-MS techniques that couple liquid chromatography-MS with size-based separation methods, such as ultrafiltration, gel permeation, or size-exclusion chromatography, are particularly amenable to the demands of MS-based screening and have demonstrated the greatest success across a broad range of drug targets. MS measurements of receptor function have many of the same advantages as AS-MS screening and are increasingly used for drug discovery as well.


Subject(s)
Drug Evaluation, Preclinical/methods , Mass Spectrometry/methods , Proteins/metabolism , Ligands , Protein Binding
9.
J Org Chem ; 64(18): 6609-6614, 1999 Sep 03.
Article in English | MEDLINE | ID: mdl-11674663

ABSTRACT

The alpha-diketone 4 was shown to be the open-chain biosynthetic precursor of the fungal metabolite oudenone (1a and 1b). Intact incorporation of 4 into 1 was achieved upon incubation of a (2)H-labeled, N-acetylcysteamine thioester derivative of 4 with growing cultures of Oudemansiella radicata. A biosynthetic scheme for the formation of the hexaketide 4 and its enzymatic cyclization into oudenone (1), consistent with the experimental data, is described. The proposed mechanism for the cyclization of 4 to 1 is analogous to the "polyepoxide cascade" model, which has been previously implicated in the biosynthesis of polyether antibiotics.

10.
Microbiology (Reading) ; 142 ( Pt 2): 435-440, 1996 Feb.
Article in English | MEDLINE | ID: mdl-8932715

ABSTRACT

Pestalotiopsis microspora was isolated from the inner bark of a small limb of Himalayan yew, Taxus wallachiana, and was shown to produce taxol in mycelial culture. Taxol was identified by spectroscopic and chromatographic comparisons with authentic taxol. Optimal taxol production occurred after 2-3 weeks in still culture at 23 degrees C. [14C]Acetate and [14C]phenylalanine served as precursors for fungal [14C]taxol. These observations on P. microspora are discussed in relation to the biological importance of taxol production by fungi in general.


Subject(s)
Antineoplastic Agents, Phytogenic/biosynthesis , Mitosporic Fungi/isolation & purification , Mitosporic Fungi/metabolism , Paclitaxel/biosynthesis , Trees/microbiology , Acetic Acid/metabolism , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Biotechnology , Drug Screening Assays, Antitumor , Ecosystem , Fermentation , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microscopy, Electron, Scanning , Mitosporic Fungi/ultrastructure , Paclitaxel/chemistry , Paclitaxel/pharmacology , Phenylalanine/metabolism , Spores, Fungal/ultrastructure , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...