Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Clin Exp Med ; 24(1): 117, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833019

ABSTRACT

To carry out an in-depth analysis of the scientific research on autoimmunity, we performed the first bibliometric analysis focusing on publications in journals dedicated to autoimmunity (JDTA) indexed by science citation index during the period 2004-2023. Using bibliometric analysis, we quantitatively and qualitatively analyzed the country, institution, author, reference and keywords information of publications in JDTA, so as to understand the quantity, publication pattern and publication characteristics of these publications. The co-occurrence networks, clustering map and timeline map were created by CiteSpace and VOSviewer software to visualize the results. The CiteSpace was also used to analyze the strongest citation burst of keywords, which could describe the frequency, intensity and time period of high-frequency keywords, and indicate the research hotspots in the field. A total of 5 710 publications were analyzed, and their annual distribution number was basically stable from 2004 to 2023, fluctuating around 300. The United States and Italy led the way in terms of the number of publications, followed by France and China. For international cooperation, the developed countries represented by the United States cooperate more closely, but the cooperation was localized, reflecting that there was no unified model of autoimmunity among countries. UDICE-French Research Universities had the greatest number of publications. Subsequently, the number of publications decreased slowly with the ranking, and the gradient was not large. Eric Gershwin and Yehuda Shoenfeld stood out among the authors. They had an excellent academic reputation and great influence in the field of autoimmunity. The results of keyword analysis showed that JDTA publications mainly studied a variety of autoimmune diseases, especially SLE and RA. At the same time, JDTA publications also paid special attention to the research of cell function, autoantibody expression, animal experiments, disease activity, pathogenesis and treatment. This study is the first to analyze the publications in JDTA from multiple indicators by bibliometrics, thus providing new insights into the research hotspots and development trends in the field of autoimmunity.


Subject(s)
Autoimmunity , Bibliometrics , Periodicals as Topic , Humans , Biomedical Research/trends , United States , France , China , Italy
2.
Immunotargets Ther ; 13: 273-286, 2024.
Article in English | MEDLINE | ID: mdl-38881648

ABSTRACT

Background: Cytokines act a vital role in autoimmune neuroinflammatory diseases (ANDs) with undetermined causal relationships. Mendelian randomization (MR) analysis was performed to estimate the causal effects of circulating levels of cytokines on the risk of ANDs. Methods: The causal relationship between 34 circulating cytokines and 4 kinds of ANDs, including multiple sclerosis (MS), neuromyelitis optica (NOM), chronic inflammatory demyelinating polyneuropathy (CIDP) and myasthenia gravis (MG) were explored using four methods of MR analysis. MR-PRESSO, MR-Egger regression methods and Cochran's Q statistic were utilized to identify the instrumental variables (IVs) with potential pleiotropy and heterogeneity. The Bonferroni correction was used for multiple group comparisons. P-value less than 3.68E-04 (0.05/ (34*4)) was considered statistically significant. Results: Negative causal effects of circulating levels of interleukin (IL)-8 (OR = 0.648, 95% CI: 0.494-0.851, P = 0.002) on risk of MS, chemokine (C-C Motif) ligand (CCL)-5 (OR = 0.295, 95% CI: 0.103-0.841, P = 0.022) and stem cell growth factor-beta (SCGF-ß) (OR = 0.745, 95% CI: 0.565-0.984, P = 0.038) on risk of CIDP, as well as positive causal effects of circulating levels of IL-2 receptor α (IL-2Rα) (OR = 1.216, 95% CI: 1.120-1.320, P = 3.20E-06) and chemokine C-X-C motif ligand (CXCL)-10 (OR = 1.404, 95% CI: 1.094-1.803, P = 0.008) on MS were observed. Nevertheless, only IL-2Rα still had a causal effect on MS after Bonferroni correction. Conclusion: The results identify a genetically predicted causal effect of IL-2Rα, IL-8 and CXCL-10 on MS, CCL-5 and SCGF-ß on CIDP.

3.
Anal Bioanal Chem ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802680

ABSTRACT

Mechanotransduction is the essential process that cells convert mechanical force into biochemical responses, and electrochemical sensor stands out from existing techniques by providing quantitative and real-time information about the biochemical signals during cellular mechanotransduction. However, the intracellular biochemical response evoked by mechanical force has been poorly monitored. In this paper, we report a method to apply local stretch on single cell and simultaneously monitor the ensuing intracellular biochemical signals. Specifically, a ferromagnetic micropipette was fabricated to locally stretch a single cell labeled with Fe3O4 nanoparticles under the external magnetic field, and the SiC@Pt nanowire electrode (SiC@Pt NWE) was inserted into the cell to monitor the intracellular hydrogen peroxide (H2O2) production induced by the local stretch. As a proof of concept, this work quantitatively investigated the elevated amount of H2O2 levels in single endothelial cell under different stretching amplitudes. This work puts forward a new research modality to manipulate and monitor the mechanotransduction at the single-cell level.

4.
Chem Sci ; 15(20): 7651-7658, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784745

ABSTRACT

Synaptic plasticity is the ability of synapses to modulate synaptic strength in response to dynamic changes within, as well as environmental changes. Although there is a considerable body of knowledge on protein expression and receptor migration in different categories of synaptic plasticity, the contribution and impact of presynaptic vesicle release and neurotransmitter levels towards plasticity remain largely unclear. Herein, nanoelectrochemistry using carbon fiber nanoelectrodes with excellent spatio-temporal resolution was applied for real-time monitoring of presynaptic vesicle release of dopamine inside single synapses of dopaminergic neurons, and exocytotic variations in quantity and kinetics under repetitive electrical stimuli. We found that the presynaptic terminal tends to maintain synaptic strength by rapidly recruiting vesicles, changing the dynamics of exocytosis, and maintaining sufficient neurotransmitter release in following stimuli. Except for small clear synaptic vesicles, dense core vesicles are involved in exocytosis to sustain the neurotransmitter level in later periods of repetitive stimuli. These data indicate that vesicles use a potential regulatory mechanism to establish short-term plasticity, and provide new directions for exploring the synaptic mechanisms in connection and plasticity.

5.
Postgrad Med J ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656404

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are involved in many key bioprocesses, including the occurrence and development of rheumatoid arthritis (RA). We aimed to analyze the association of genetic variants of long non-coding RNA LOC553103 and its peripheral blood mononuclear cells (PBMC) expression with RA. METHODS: We enrolled 457 RA patients and 551 healthy controls and conducted a case-control study to analyze the relationship between LOC553103 gene rs272879 and the susceptibility of RA by TaqMan single nucleotide polymorphism genotyping. Among them, we sampled 92 cases and 92 controls, respectively, to detect the PBMC level of LOC553103 using quantitative real-time polymerase chain reaction technology. We explored the association between LOC553103 rs272879 and its PBMC expression levels in 71 RA patients. Mann-Whitney, Chi-square, and Spearman correlation analysis were used for statistical analysis and P-value <.05 was considered statistically significant. RESULTS: The genotype frequency of LOC553103 rs272879 CC was increased, and CG was decreased in RA patients compared to the control group (χ2 = 6.772, P = .034). The LOC553103 expression level in PBMC of RA patients was downregulated compared to healthy control (Z = -4.497, P < .001). Moreover, negative correlations were observed between the PBMC level of LOC553103 and erythrocyte sedimentation rate (rs = -0.262, P = .018), white blood cell count (rs = -0.382, P = .004), platelet (rs = -0.293, P = .030), and disease activity score in 28 joints (rs = -0.271, P = .016) in RA patients. CONCLUSIONS: This study provides the first evidence supporting an association between LOC553103 gene polymorphisms and susceptibility of RA and a relationship of PBMC level of LOC553103 with clinical manifestations and laboratory indicators of RA patients.

6.
Int Immunopharmacol ; 128: 111511, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38194746

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a common autoimmune disease with unclear pathogenesis. Progress in its clinical diagnosis and treatment mainly depends on the elucidation of its pathogenesis and the exploration of new biomarkers. Exosomes contain various biomolecules, including long non-coding ribonucleic acids (lncRNAs). lncRNAs may participate in the regulation of autoimmune and inflammatory processes during RA pathogenesis by transmitting these biomolecules via exosomes among different cells. Therefore, the investigation of lncRNAs in RA exosomes may be a feasible pathway to elucidate RA pathogenesis, identify new diagnostic biomarkers, and identify potential therapeutic targets. METHODS: In the first phase of exosomal non-coding RNAs screening, exosomes were isolated from the peripheral blood of six patients with RA and healthy controls (HC). High-throughput RNA sequencing was performed to obtain lncRNA expression profiles, and 15 lncRNAs with the highest differential expression were selected as candidate lncRNAs. In the second phase of validation using real-time quantitative polymerase chain reaction (qRT-PCR), differential expression of the 15 candidate lncRNAs was verified in 42 patients with RA and their matched HC. Their potential value as RA diagnostic biomarkers was assessed using receiver operating characteristic (ROC) curve analysis. Their relationships with common clinical indices of RA were explored using Spearman's rank correlation and linear regression analyses. RESULT: Compared to HC, patients with RA had 206 upregulated and 2,332 downregulated lncRNAs. Fifteen candidate lncRNAs were validated by qRT-PCR, of which 12 (SNHG6, RPS18P9, RPL21P28, EBLN3P, FAM153CP, RPL23P8, SNHG31, NORAD, H3P6, DLEU2, TUG1, and OIP5-AS1) were upregulated, and three (CXXC4-AS1, OLMALINC, and NPHP3-AS1) were downregulated. In the ROC analysis of the 15 candidate lncRNAs, the area under the curve (AUC) ranged from 0.847 (0.767, 0.927) for OLMALINC to 0.994 (0.984, 1.000) for CXXC4-AS1. Spearman rank correlation analysis revealed erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and disease activity score of 28 (DAS28) were correlated with seven, six, and five lncRNAs, respectively. Further linear regression analysis revealed a negative relationship between exosomal SNHG6 and ESR (B = -0.384, P = 0.006), and a positive relationship between SNHG31 and ESR (B = 0.381, P = 0.007). Exosomal SNHG6 also showed a negative relationship with CRP (B = -0.361, P = 0.019). Moreover, exosomal RPS18P9 and SNGH31 had a negative effect and a positive effect on DAS28, respectively (B = -0.463, P < 0.001; B = 0.586, P < 0.001), implying novel exosomal lncRNAs were the independent influencing factors of the main RA-related clinical indices. CONCLUSIONS: lncRNAs in RA plasma exosomes have characteristic expression profiles, including some lncRNAs with potential as diagnostic biomarkers and therapeutic targets for RA.


Subject(s)
Arthritis, Rheumatoid , Exosomes , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Exosomes/metabolism , Arthritis, Rheumatoid/metabolism , Biomarkers , C-Reactive Protein/metabolism , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism
7.
Front Immunol ; 14: 1183570, 2023.
Article in English | MEDLINE | ID: mdl-37275906

ABSTRACT

Objective: Emerging evidence suggests an increased prevalence of coronavirus disease 2019 (COVID-19) in patients with systemic lupus erythematosus (SLE), the prototype of autoimmune disease, compared to the general population. However, the conclusions were inconsistent, and the causal relationship between COVID-19 and SLE remains unknown. Methods: In this study, we aimed to evaluate the bidirectional causal relationship between COVID-19 and SLE using bidirectional Mendelian randomization (MR) analysis, including MR-Egger, weighted median, weighted mode, and the inverse variance weighting (IVW) method. Results: The results of IVW showed a negative effect of SLE on severe COVID-19 (OR = 0.962, p = 0.040) and COVID-19 infection (OR = 0.988, p = 0.025), which disappeared after Bonferroni correction. No causal effect of SLE on hospitalized COVID-19 was observed (OR = 0.983, p = 0.148). In the reverse analysis, no causal effects of severe COVID-19 infection (OR = 1.045, p = 0.664), hospitalized COVID-19 (OR = 0.872, p = 0.109), and COVID-19 infection (OR = 0.943, p = 0.811) on SLE were found. Conclusion: The findings of our bidirectional causal inference analysis did not support a genetically predicted causal relationship between SLE and COVID-19; thus, their association observed in previous observational studies may have been caused by confounding factors.


Subject(s)
Autoimmune Diseases , COVID-19 , Lupus Erythematosus, Systemic , Humans , COVID-19/complications , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/genetics , Causality , Mendelian Randomization Analysis
8.
Proc Natl Acad Sci U S A ; 120(19): e2219994120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126689

ABSTRACT

Glutamate (Glu) is the major excitatory transmitter in the nervous system. Impairment of its vesicular release by ß-amyloid (Aß) oligomers is thought to participate in pathological processes leading to Alzheimer's disease. However, it remains unclear whether soluble Aß42 oligomers affect intravesicular amounts of Glu or their release in the brain, or both. Measurements made in this work on single Glu varicosities with an amperometric nanowire Glu biosensor revealed that soluble Aß42 oligomers first caused a dramatic increase in vesicular Glu storage and stimulation-induced release, accompanied by a high level of parallel spontaneous exocytosis, ultimately resulting in the depletion of intravesicular Glu content and greatly reduced release. Molecular biology tools and mouse models of Aß amyloidosis have further established that the transient hyperexcitation observed during the primary pathological stage is mediated by an altered behavior of VGLUT1 responsible for transporting Glu into synaptic vesicles. Thereafter, an overexpression of Vps10p-tail-interactor-1a, a protein that maintains spontaneous release of neurotransmitters by selective interaction with t-SNAREs, resulted in a depletion of intravesicular Glu content, triggering advanced-stage neuronal malfunction. These findings are expected to open perspectives for remediating Aß42-induced neuronal hyperactivity and neuronal degeneration.


Subject(s)
Alzheimer Disease , Glutamic Acid , Mice , Animals , Glutamic Acid/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neurons/metabolism , Brain/metabolism , Peptide Fragments/metabolism
9.
Biosens Bioelectron ; 222: 114928, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36450163

ABSTRACT

Reactive oxygen species (ROS) and nicotinamide adenine dinucleotide (NADH) are important intracellular redox-active molecules involved in various pathological processes including inflammation, neurodegenerative diseases, and cancer. However, the fast dynamic changes and mutual regulatory kinetic relationship between intracellular ROS and NADH in these biological processes are still hard to simultaneously investigate. A dual-channel nanowire electrode (DC-NWE) integrating two conductive nanowires, one functionalized with platinum nanoparticles and the other with conductive polymer, was nanofabricated for the selective and simultaneous real-time monitoring of intracellular ROS and NADH release by mitochondria in single living MCF-7 tumoral cells stimulated by resveratrol. The production of ROS was observed to occur tenths of a second before the release of NADH, a significant new piece of information suggesting a mechanism of action of resveratrol. Beyond the importance of the specific data gathered in this study, this work established the feasibility of simultaneously monitoring multiple species and analyzing their kinetics relationships over sub-second time scales thanks to dual-channel nanowire electrodes. It is believed that this concept and its associated nanoelectrochemical tools might benefit to a deeper understanding of mutual regulatory relationship between intracellular crucial molecular markers during physiological and pathological processes as well as for evaluating medical treatments.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , NAD/chemistry , Reactive Oxygen Species , Kinetics , Resveratrol , Platinum , Oxidation-Reduction
10.
Front Nutr ; 9: 1014847, 2022.
Article in English | MEDLINE | ID: mdl-36570136

ABSTRACT

Background: Polyunsaturated fatty acids (PUFAs) are closely related to osteoporosis. To test their causal relationship, we conducted a Mendelian randomization (MR) analysis. Methods: We analyzed the causal relationship between four PUFAs measures, n-3 PUFAs (n-3), n-6 PUFAs (n-6), the ratio of n-3 PUFAs to total fatty acids (n-3 pct), and the ratio of n-6 PUFAs to n-3 PUFAs (n-6 to n-3), and five measures of osteoporosis, including estimated bone mineral density (eBMD), forearm (FA) BMD, femoral neck (FN) BMD, lumbar spine (LS) BMD, and fracture, using two-sample MR analysis. In order to verify the direct effect between PUFAs and BMD, we chose interleukin-6 (IL-6), tumor necrosis factor-ß (TNF-ß), and bone morphogenetic proteins 7 (BMP-7), three markers or cytokines strongly related to BMD, as possible confounding factors, and analyzed the possible causal relationships between them and PUFAs or BMD by MR. Inverse variance weighting (IVW), MR-Egger, weighted and weighted median were conducted. MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) and MR-Egger regression methods were used to evaluate the potential pleiotropy of instrumental variables (IVs) and outliers were identified by MR-PRESSO. Cochran's Q statistic was used to detect the heterogeneity among IVs. Leave-one-out sensitivity analysis was used to find SNPs that have a significant impact on the results. All results were corrected by the Bonferroni correction. Results: The IVW results showed that n-3 PUFAs (OR = 1.030, 95% CI: 1.013, 1.047, P = 0.001) and n-6 PUFAs (OR = 1.053, 95% CI: 1.034, 1.072, P < 0.001) were positively correlated with eBMD, while n-6 to n-3 (OR = 0.947, 95% CI: 0.924, 0.970, P < 0.001) were negatively correlated with eBMD. These casual relationships still existed after Bonferroni correction. There were positive effects of n-3 PUFAs on FA BMD (OR = 1.090, 95% CI: 1.011, 1.176, P = 0.025) and LS BMD (OR = 1.056, 95% CI: 1.011, 1.104, P = 0.014), n-3 pct on eBMD (OR = 1.028, 95% CI: 1.002, 1.055, P = 0.035) and FA BMD (OR = 1.090, 95% CI: 1.011, 1.174, P = 0.025), n-6 to n-3 on LS BMD (OR = 1.071, 95% CI: 1.021, 1.124, P = 0.005); negative effects of n-3 pct on fracture (OR = 0.953, 95% CI: 0.918, 0.988, P = 0.009) and n-6 to n-3 on FA BMD (OR = 0.910, 95% CI: 0.837, 0.988, P = 0.025). However, these causal effects all disappeared after Bonferroni correction (all P > 0.0025). None of IL-6, TNF-ß, and BMP-7 had a causal effect on PUFA and BMD simultaneously (all P > 0.05). Conclusion: Evidence from this MR study supports the genetically predicted causal effects of n-3, n-6, n-3 pct, and n-6 to n-3 on eBMD. In addition, n-3 not only associate with FA BMD and LS BMD through its own level and n-6 to n-3, but also link to fracture through n-3 pct.

11.
J Med Virol ; 94(12): 5640-5652, 2022 12.
Article in English | MEDLINE | ID: mdl-35971954

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause coronavirus disease 2019 (COVID-19), an acute respiratory inflammation that has emerged worldwide since December 2019, and it quickly became a global epidemic. Inflammatory bowel disease (IBD) is a group of chronic nonspecific intestinal inflammatory diseases whose etiology has not been elucidated. The two have many overlapping symptoms in clinical presentation, such as abdominal pain, diarrhea, pneumonia, etc. Imbalance of the autoimmune system in IBD patients and long-term use of immunosuppressive drugs may increase the risk of infection; and systemic symptoms caused by COVID-19 may also induce or exacerbate intestinal inflammation. It has been found that the SARS-CoV-2 receptor angiotensin converting enzyme 2, which is highly expressed in the lung and intestine, is an inflammatory protective factor, and is downregulated and upregulated in COVID-19 and IBD, respectively, suggesting that there may be a coregulatory pathway. In addition, the immune activation pattern of COVID-19 and the cytokine storm in the inflammatory response have similar roles in IBD, indicating that the two diseases may influence each other. Therefore, this review aimed to address the following research questions: whether SARS-CoV-2 infection leads to the progression of IBD; whether IBD increases the risk of COVID-19 infection and poor prognosis; possible common mechanisms and genetic cross-linking between the two diseases; new treatment and care strategies for IBD patients, and the feasibility and risk of vaccination in the context of the COVID-19 epidemic.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Angiotensin-Converting Enzyme 2 , COVID-19/complications , Cytokine Release Syndrome , Humans , Inflammatory Bowel Diseases/complications , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2
12.
Arthritis Rheumatol ; 74(12): 1984-1990, 2022 12.
Article in English | MEDLINE | ID: mdl-35830513

ABSTRACT

OBJECTIVE: Previous observational studies demonstrated that a subset of patients with systemic lupus erythematosus (SLE) have markedly short telomere length in leukocytes. This study was undertaken to test whether leukocyte telomere length is causally associated with risk of SLE. METHODS: A 2-sample Mendelian randomization (MR) analysis was conducted to estimate causality of telomere length on SLE in European populations. A replication 2-sample MR study using Asian genetic data was also conducted. A reverse MR analysis was then performed to test the effects of SLE on telomere length. The autoantibodies targeting telomere-associated protein (telomeric repeat-binding factor 1 [TERF1] autoantibodies) were detected in patients with SLE, healthy controls, and patients with rheumatoid arthritis. RESULTS: The results of the inverse variance-weighted method (odds ratio [OR] 2.96 [95% confidence interval (95% CI) 1.58-5.55], P < 0.001) showed strong evidence for a causal relationship between longer telomere length and risk of SLE in people with European ancestry. The outcomes of MR-Egger regression analysis (OR 29.46 [95% CI 3.02-287.60], P = 0.033) and MR pleiotropy residual sum and outlier analysis (OR 3.62 [95% CI 2.03-6.46], P = 0.002) also showed that longer telomere length was significantly associated with increased risk of SLE in a European population. Sensitivity analyses using different methods and summary data sets showed that the results were still broadly consistent. A replication MR study using Asian genetic data yielded similar findings. However, the reverse MR analysis showed that genetically predicted SLE was not causally associated with telomere length. In addition, we found that TERF1 autoantibodies were present in 2 of 40 SLE patients (5.0%). CONCLUSION: In contrast with previous observational studies, MR analyses show that longer telomere length is significantly associated with increased risk of SLE.


Subject(s)
Lupus Erythematosus, Systemic , Mendelian Randomization Analysis , Humans , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Lupus Erythematosus, Systemic/epidemiology , Telomere/genetics , Autoantibodies/genetics
13.
Environ Res ; 212(Pt C): 113377, 2022 09.
Article in English | MEDLINE | ID: mdl-35500858

ABSTRACT

Gout is a chronic disease with inflammatory arthritis caused by monosodium urate (MSU) crystals deposition, an elevated serum urate level (hyperuricaemia) is the critical factor leading to MSU crystals deposition and promoting the progression of gout. The onset and development of gout is generally the result of multiple factors, such as diet, heredity and environmental factors. Although genetics and diet are thought to play as major factors, a growing body of research evidence has highlighted that environmental factors also play a significant role in the onset and exacerbation of gout. Recent studies have shown that air pollutants such as particulate matter, sulfur dioxide (SO2) and carbon monoxide (CO) may increase the risk of hospitalizations for gout, and that the changes in temperature and humidity may affect uric acid (UA) levels. There is also seasonal trend in gout. It has been demonstrated that environmental factors may induce or accelerate the production and release of pro-inflammatory mediators, causing an unbalance oxidative stress and systemic inflammation, and then participating in the overall process or a certain link of gout. Moreover, several environmental factors have shown the ability to induce the production urate and regulate the innate immune pathways, involving in the pathogenesis of gout. Nevertheless, the role of environmental factors in the etiology of gout remains unclear. In this review, we summarized the recent literatures and aimed to discuss the relationship between environmental factors (such as microclimate, season, ambient/indoor air pollution and extreme weather) and gout. We further discussed the inflammatory mechanisms of environmental factors and gout and the comprehensive effects of environmental factors on gout. We also made a prospect of the management and treatment of gout, with special consideration to environmental factors associated with gout.


Subject(s)
Gout , Uric Acid , Gout/etiology , Gout/genetics , Humans , Inflammation , Uric Acid/chemistry , Uric Acid/metabolism , Uric Acid/pharmacology
14.
HLA ; 100(1): 82-83, 2022 07.
Article in English | MEDLINE | ID: mdl-35244979

ABSTRACT

The novel HLA-C*03:587 allele differs from the closest allele C*03:03:01:01 in exon 5.


Subject(s)
Genes, MHC Class I , HLA-C Antigens , Alleles , Asian People/genetics , China , HLA-C Antigens/genetics , Humans
15.
Front Immunol ; 13: 808832, 2022.
Article in English | MEDLINE | ID: mdl-35154127

ABSTRACT

Objectives: Periodontitis (PD) has been linked to arthritis in previous epidemiological observational studies; however, the results are inconclusive. It remains unclear whether the association between PD and arthritis is causal. The purpose of this study was to investigate the causal association of PD with arthritis, including rheumatoid arthritis (RA) and osteoarthritis (OA). Methods: We performed a two-sample bidirectional Mendelian randomization (MR) analysis using publicly released genome-wide association studies (GWAS) statistics. The inverse-variance weighted (IVW) method was used as the primary analysis. We applied four complementary methods, including weighted median, weighted mode, MR-Egger regression and MR pleiotropy residual sum and outlier (MR-PRESSO) to detect and correct for the effect of horizontal pleiotropy. Results: Genetically determined PD did not have a causal effect on OA (OR = 1.06, 95% CI: 0.99-1.15, P = 0.09) and RA (OR = 0.99, 95% CI: 0.87-1.13, P = 0.89). Furthermore, we did not find a significant causal effect of arthritis on PD in the reverse MR analysis. The results of MR-Egger regression, Weighted Median, and Weighted Mode methods were consistent with those of the IVW method. Horizontal pleiotropy was unlikely to distort the causal estimates according to the sensitivity analysis. Conclusions: Our MR analysis reveals non-causal association of PD with arthritis, despite observational studies reporting an association between PD and arthritis.


Subject(s)
Arthritis/etiology , Disease Susceptibility , Periodontitis/etiology , Arthritis/epidemiology , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis/methods , Periodontitis/epidemiology
16.
RMD Open ; 8(2)2022 09.
Article in English | MEDLINE | ID: mdl-37582060

ABSTRACT

BACKGROUND: Although genome-wide association studies (GWASs) have identified more than 100 loci associated with rheumatoid arthritis (RA) susceptibility, the causal genes and biological mechanisms remain largely unknown. METHODS: A cross-tissue transcriptome-wide association study (TWAS) using the unified test for molecular signaturestool was performed to integrate GWAS summary statistics from 58 284 individuals (14 361 RA cases and 43 923 controls) with gene-expression matrix in the Genotype-Tissue Expression project. Subsequently, a single tissue by using FUSION software was conducted to validate the significant associations. We also compared the TWAS with different gene-based methodologies, including Summary Data Based Mendelian Randomization (SMR) and Multimarker Analysis of Genomic Annotation (MAGMA). Further in silico analyses (conditional and joint analysis, differential expression analysis and gene-set enrichment analysis) were used to deepen our understanding of genetic architecture and comorbidity aetiology of RA. RESULTS: We identified a total of 47 significant candidate genes for RA in both cross-tissue and single-tissue test after multiple testing correction, of which 40 TWAS-identified genes were verified by SMR or MAGMA. Among them, 13 genes were situated outside of previously reported significant loci by RA GWAS. Both TWAS-based and MAGMA-based enrichment analyses illustrated the shared genetic determinants among autoimmune thyroid disease, asthma, type I diabetes mellitus and RA. CONCLUSION: Our study unveils 13 new candidate genes whose predicted expression is associated with risk of RA, providing new insights into the underlying genetic architecture of RA.


Subject(s)
Arthritis, Rheumatoid , Transcriptome , Humans , Genome-Wide Association Study/methods , Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/genetics , Causality , Polymorphism, Single Nucleotide
17.
Pharmacol Res ; 176: 105906, 2022 02.
Article in English | MEDLINE | ID: mdl-34543740

ABSTRACT

Hepatocellular carcinoma (HCC) is the fourth major contributor to cancer-related deaths worldwide, and patients mostly have poor prognosis. Although several drugs have been approved for the treatment of HCC, cisplatin (CDDP) is still applied in treatment of HCC as a classical chemotherapeutic drug. Unfortunately, the emergence of CDDP resistance has caused HCC patients to exhibit poor drug response. How to mitigate or even reverse CDDP resistance is an urgent clinical issue to be solved. Because of critical roles in biological functional processes and disease developments, non-coding RNAs (ncRNAs) have been extensively studied in HCC in recent years. Importantly, ncRNAs have also been demonstrated to be involved in the development of HCC to CDDP resistance process. Therefore, this review highlighted the regulatory roles of ncRNAs in CDDP resistance of HCC, elucidated the multiple potential mechanisms by which HCC develops CDDP resistance, and attempted to propose multiple drug delivery systems to alleviate CDDP resistance. Recently, ncRNA-based therapy may be a feasible strategy to alleviate CDDP resistance in HCC. Meanwhile, nanoparticles can overcome the deficiencies in ncRNA-based therapy and make it possible to reverse tumor drug resistance. The combined use of these strategies provides clues for reversing CDDP resistance and overcoming the poor prognosis of HCC.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , RNA, Untranslated , Animals , Humans
18.
Front Immunol ; 12: 667097, 2021.
Article in English | MEDLINE | ID: mdl-34557183

ABSTRACT

The observational association between gut microbiome and systemic lupus erythematosus (SLE) has been well documented. However, whether the association is causal remains unclear. The present study used publicly available genome-wide association study (GWAS) summary data to perform two-sample Mendelian randomization (MR), aiming to examine the causal links between gut microbiome and SLE. Two sets of MR analyses were conducted. A group of single nucleotide polymorphisms (SNPs) that less than the genome-wide statistical significance threshold (5 × 10-8) served as instrumental variables. To obtain a comprehensive conclusion, the other group where SNPs were smaller than the locus-wide significance level (1 × 10-5) were selected as instrumental variables. Based on the locus-wide significance level, the results indicated that there were causal effects of gut microbiome components on SLE risk. The inverse variance weighted (IVW) method suggested that Bacilli and Lactobacillales were positively correlated with the risk of SLE and Bacillales, Coprobacter and Lachnospira were negatively correlated with SLE risk. The results of weighted median method supported that Bacilli, Lactobacillales, and Eggerthella were risk factors for SLE and Bacillales and Coprobacter served as protective factors for SLE. The estimates of MR Egger suggested that genetically predicted Ruminiclostridium6 was negatively associated with SLE. Based on the genome-wide statistical significance threshold, the results showed that Actinobacteria might reduce the SLE risk. However, Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) detected significant horizontal pleiotropy between the instrumental variables of Ruminiclostridium6 and outcome. This study support that there are beneficial or detrimental causal effects of gut microbiome components on SLE risk.


Subject(s)
Bacteria/growth & development , Gastrointestinal Microbiome , Gene-Environment Interaction , Intestines/microbiology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/microbiology , Polymorphism, Single Nucleotide , Dysbiosis , Genome-Wide Association Study , Humans , Lupus Erythematosus, Systemic/diagnosis , Mendelian Randomization Analysis , Protective Factors , Risk Assessment , Risk Factors
19.
Lupus ; 30(12): 1923-1930, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34482739

ABSTRACT

Background: Abnormal expression and function of long non-coding RNAs (lncRNAs) are closely related to the pathogenesis of systemic lupus erythematosus (SLE). In this study, we aimed to investigate the association of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) gene single-nucleotide polymorphisms (SNPs) with susceptibility and clinical characteristics of SLE patients. Methods: A case-control study including 489 SLE patients and 492 healthy controls was conducted. Four MALAT-1 SNPs (rs4102217, rs591291, rs11227209, and rs619586) were genotyped in all subjects, their correlation with SLE susceptibility and clinical characteristics were also analyzed. Results: Results showed that the rs4102217 locus was associated with the risk of SLE. In recessive models, the GG+CG genotype of rs4102217 was associated with the decreased risk of SLE compared to CC (p = 0.036, OR = 0.348, 95% CI: 0.124-0.975). In additive models, the GG genotype of rs4102217 was associated with the decreased risk of SLE compared to CC (p = 0.040, OR = 0.355, 95% CI: 0.127-0.996). However, no association was found between MALAT-1 gene polymorphism and clinical manifestations of SLE (all p > 0.05). Conclusion: In summary, MALAT-1 rs4102217 is associated with susceptibility to SLE, suggesting that MALAT-1 may play a role in SLE.


Subject(s)
Lupus Erythematosus, Systemic/genetics , RNA, Long Noncoding/genetics , Adult , Case-Control Studies , China/epidemiology , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , Humans , Lupus Erythematosus, Systemic/ethnology , Male , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...