Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 721
Filter
1.
Plants (Basel) ; 13(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732487

ABSTRACT

Establishing plant regeneration systems and efficient genetic transformation techniques plays a crucial role in plant functional genomics research and the development of new crop varieties. The inefficient methods of transformation and regeneration of recalcitrant species and the genetic dependence of the transformation process remain major obstacles. With the advancement of plant meristematic tissues and somatic embryogenesis research, several key regulatory genes, collectively known as developmental regulators, have been identified. In the field of plant genetic transformation, the application of developmental regulators has recently garnered significant interest. These regulators play important roles in plant growth and development, and when applied in plant genetic transformation, they can effectively enhance the induction and regeneration capabilities of plant meristematic tissues, thus providing important opportunities for improving genetic transformation efficiency. This review focuses on the introduction of several commonly used developmental regulators. By gaining an in-depth understanding of and applying these developmental regulators, it is possible to further enhance the efficiency and success rate of plant genetic transformation, providing strong support for plant breeding and genetic engineering research.

2.
Int J Hematol ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814500

ABSTRACT

G protein pathway suppressor 2 (GPS2) has been shown to play a pivotal role in human and mouse definitive erythropoiesis in an EKLF-dependent manner. However, whether GPS2 affects human primitive erythropoiesis is still unknown. This study demonstrated that GPS2 positively regulates erythroid differentiation in K562 cells, which have a primitive erythroid phenotype. Overexpression of GPS2 promoted hemin-induced hemoglobin synthesis in K562 cells as assessed by the increased percentage of benzidine-positive cells and the deeper red coloration of the cell pellets. In contrast, knockdown of GPS2 inhibited hemin-induced erythroid differentiation of K562 cells. GPS2 overexpression also enhanced erythroid differentiation of K562 cells induced by cytosine arabinoside (Ara-C). GPS2 induced hemoglobin synthesis by increasing the expression of globin and ALAS2 genes, either under steady state or upon hemin treatment. Promotion of erythroid differentiation of K562 cells by GPS2 mainly relies on NCOR1, as knockdown of NCOR1 or lack of the NCOR1-binding domain of GPS2 potently diminished the promotive effect. Thus, our study revealed a previously unknown role of GPS2 in regulating human primitive erythropoiesis in K562 cells.

3.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792192

ABSTRACT

Conducting polymers like polypyrrole, polyaniline, and polythiophene with nanostructures offers several advantages, such as high conductivity, a conjugated structure, and a large surface area, making them highly desirable for energy storage applications. However, the direct synthesis of conducting polymers with nanostructures poses a challenge. In this study, we employed a hard template method to fabricate polystyrene@polypyrrole (PS@PPy) core-shell nanoparticles. It is important to note that PS itself is a nonconductive material that hinders electron and ion transport, compromising the desired electrochemical properties. To overcome this limitation, the PS cores were removed using organic solvents to create hollow PPy nanospheres. We investigated six different organic solvents (cyclohexane, toluene, tetrahydrofuran, chloroform, acetone, and N,N-dimethylformamide (DMF)) for etching the PS cores. The resulting hollow PPy nanospheres showed various nanostructures, including intact, hollow, buckling, and collapsed structures, depending on the thickness of the PPy shell and the organic solvent used. PPy nanospheres synthesized with DMF demonstrated superior electrochemical properties compared to those prepared with other solvents, attributed to their highly effective PS removal efficiency, increased specific surface area, and improved charge transport efficiency. The specific capacitances of PPy nanospheres treated with DMF were as high as 350 F/g at 1 A/g. And the corresponding symmetric supercapacitor demonstrated a maximum energy density of 40 Wh/kg at a power density of 490 W/kg. These findings provide new insights into the synthesis method and energy storage mechanisms of PPy nanoparticles.

4.
J Food Sci ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783591

ABSTRACT

Ginkgo biloba leaves (GBLs) contain high phytoconstituents, but ginkgolic acids (GAs, the main toxic compound in GBLs) have limited its applications. Processing Ginkgo biloba dark tea (GBDT) using fixation technology could decrease the toxic compounds; retain flavonoids, ginkgolides, and bilobalide; and improve the product quality. For the first time, various thermal fixations (hot air fixation [HAF], iron pot fixation [IPF], and boiled water fixation [BWF]) followed by rolling, fermentation, and drying were applied to produce GBDT. A comprehensive analysis of the toxicants (GAs), main bioactive compounds (ginkgolides and bilobalide, flavonoids, antioxidants, and phenolic profiles), and product qualities (moisture content, reducing sugar [RS], free amino acids [FAAs], enzyme activity, color properties, antioxidant capacity, etc.) were evaluated. The results revealed that thermal fixations BWF and HAF significantly reduced the GA contents (41.1%-34.6%). Most terpene lactones showed significant differences in control, IPF, and HAF. The HAF had lower total flavonoid content (TFC) than BWF and IPF. The control group (unfixated) had the highest toxic components (GA), terpene trilactones, and TFC compared with various fixations. Adding different fixations to rolling, fermentation, and drying had various impacts on GBDT, and principal component analysis supported the results. Among four thermal fixations, HAF yielded the best results in RS, FAA, total phenolic content, and antioxidant activities, while IPF had the highest TFC. BWF had the lowest content for GA. In conclusion, HAF (6) was chosen as the best technique for producing GBDT since it preserved GBDT's bioactive components while lowering its toxic components.

5.
Mol Nutr Food Res ; 68(10): e2300347, 2024 May.
Article in English | MEDLINE | ID: mdl-38712453

ABSTRACT

Skeletal muscle can undergo detrimental changes in various diseases, leading to muscle dysfunction and atrophy, thus severely affecting people's lives. Along with exercise, there is a growing interest in the potential of nutritional support against muscle atrophy. This review provides a brief overview of the molecular mechanisms driving skeletal muscle atrophy and summarizes recent advances in nutritional interventions for preventing and treating muscle atrophy. The nutritional supplements include amino acids and their derivatives (such as leucine, ß-hydroxy, ß-methylbutyrate, and creatine), various antioxidant supplements (like Coenzyme Q10 and mitoquinone, resveratrol, curcumin, quercetin, Omega 3 fatty acids), minerals (such as magnesium and selenium), and vitamins (such as vitamin B, vitamin C, vitamin D, and vitamin E), as well as probiotics and prebiotics (like Lactobacillus, Bifidobacterium, and 1-kestose). Furthermore, the study discusses the impact of a combined approach involving nutritional support and physical therapy to prevent muscle atrophy, suggests appropriate multi-nutritional and multi-modal interventions based on individual conditions to optimize treatment outcomes, and enhances the recovery of muscle function for patients. By understanding the molecular mechanisms behind skeletal muscle atrophy and implementing appropriate interventions, it is possible to enhance the recovery of muscle function and improve patients' quality of life.


Subject(s)
Dietary Supplements , Muscle, Skeletal , Muscular Atrophy , Humans , Muscular Atrophy/prevention & control , Muscular Atrophy/diet therapy , Muscle, Skeletal/drug effects , Probiotics/administration & dosage , Antioxidants , Prebiotics , Vitamins , Animals
6.
Front Plant Sci ; 15: 1340336, 2024.
Article in English | MEDLINE | ID: mdl-38590742

ABSTRACT

China consumes 35% of the world's fertilizer every year; however, most of the nitrogen fertilizers, which are essential for rice cultivation, are not used effectively. In this study, factors affecting the nitrogen leaching loss rate were studied in typical soil and rice varieties in South China. The effects of various irrigation measures on rice growth and nitrogen leaching loss were investigated by conducting experiments with eight groups. These groups included traditional irrigation (TI) and shallow wet irrigation (SWI). The TI is a common irrigation method for farmers in South China, maintaining a water layer of 5-8 cm depth. For SWI, after establishing a shallow water layer usually maintaining at 1-2 cm, paddy is irrigated when the field water level falls to a certain depth, then this process is then repeat as necessary. The nitrogen distribution characteristics were determined using 15N isotope tracing. In addition, the effects of nitrification, denitrification, and microbial composition on soil nitrogen transformation at different depths were studied by microbial functional gene quantification and high-throughput sequencing. The results revealed that in the SWI groups, the total nitrogen leaching loss rate reduced by 0.3-0.8% and the nitrogen use efficiency (NUE) increased by 2.18-4.43% compared with those in the TI groups. After the 15N-labeled nitrogen fertilizer was applied, the main pathways of nitrogen were found to be related to plant absorption and nitrogen residues. Furthermore, paddy soil ammonia-oxidizing archaea were more effective than ammonia-oxidizing bacteria for soil ammonia oxidation by SWI groups. The SWI measures increased the relative abundance of Firmicutes in paddy soil, enhancing the ability of rice to fix nitrogen to produce ammonium nitrogen, thus reducing the dependence of rice on chemical fertilizers. Moreover, SWI enhanced the relative abundance of nirS and nosZ genes within surface soil bacteria, thereby promoting denitrification in the surface soil of paddy fields. SWI also promoted ammonia oxidation and denitrification by increasing the abundance and activity of Proteobacteria, Nitrospirae, and Bacteroidetes. Collectively, SWI effectively reduced the nitrogen leaching loss rate and increase NUE.

7.
Front Immunol ; 15: 1355315, 2024.
Article in English | MEDLINE | ID: mdl-38558807

ABSTRACT

Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.


Subject(s)
Macrophage Activation Syndrome , MicroRNAs , Humans , Animals , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Receptors, IgG/genetics , Macrophage Activation Syndrome/genetics , Phagocytosis/genetics , Interleukin-12
8.
Article in English | MEDLINE | ID: mdl-38578382

ABSTRACT

Oxidative stress and apoptosis play crucial roles in myocardial ischemia‒reperfusion injury (MIRI). In this study, we investigated the role of circ_0073932 in MIRI as well as its molecular mechanism. A hypoxia/reoxygenation (H/R) cardiomyocyte model was established with H9C2 cardiomyocytes, and RT-qPCR was used to measure gene expression. We observed that circ_0073932 expression was abnormally increased in the H/R cardiomyocyte model and in blood samples from MIRI patients. Inhibition of circ_0073932 suppressed H/R-induced cell apoptosis, oxidative stress (ROS, LDH and MDA), and p-JNK expression. Dual luciferase reporter assays showed that circ_0073932 targeted the downregulation of miR-493-3p, and miR-493-3p targeted the downregulation of FAF1. Furthermore, si-circ_0073932, an miR-493-3p inhibitor, oe-FAF1, or si-FAF1 were transfected into H9C2 cardiomyocytes to investigate the roles of these factors in MIRI. Our results showed that compared with the H/R group, si-circ_0073932 inhibited H/R-induced cell apoptosis, oxidative stress (ROS, LDH and MDA), and p-JNK expression. These results were reversed by the miR-493-3p inhibitor or oe-FAF1. Finally, a rat model of MIRI was established, and si-circ_0073932 was administered. Inhibition of circ_0073932 reduced the area of myocardial infarction and decreased the levels of apoptosis and oxidative stress by inhibiting the JNK signaling pathway. Our study indicated that circ_0073932 mediates MIRI via miR-493-3p/FAF1/JNK in vivo and in vitro, revealing novel insights into the pathogenesis of MIRI and providing a new target for the clinical treatment of MIRI.

9.
Anal Sci ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683477

ABSTRACT

Based on the automatic light wave ashing instrument, palladium nitrate was used as an ashing aid for the first time to collect selenium in the process of food ashing pre-treatment, and a method for the determination of selenium in food by ashing method was established with inductively coupled plasma mass spectrometry. At the same time, the effects of magnesium nitrate, rhodium nitrate, and nickel nitrate as ashing aids on selenium collection were investigated using certified plant standard materials. The capture of selenium by magnesium nitrate, rhodium nitrate, and nickel nitrate as ashing aids did not exceed 50%. Using palladium nitrate as an ashing aid, six food standard materials were measured, with selenium recovery rates ranging from 97 to 106%. A complete analysis cycle can be completed within an hour. The method detection limit of selenium was 0.021 µg g-1, and the relative standard deviation of five measurements was less than 7%. The experimental results show that palladium nitrate is an excellent ashing aid for capturing selenium, and it is far superior to the other three aids. In addition, the mechanism of palladium nitrate as an ashing aid for capturing selenium was discussed.

10.
Food Chem ; 450: 139284, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640543

ABSTRACT

Polyprenols (PPs) are compounds with excellent biological activities and are applied in food, pharmaceutical, and cosmetic industries. However, its strong non-polar nature makes it difficult to separate with many saturated impurities (such as saturated fatty acids) extracted together. Complexation extraction is an effective method for separating saturated and polyunsaturated compounds. In this study, mesoporous silica MCM-41 was modified by imidazole-based ionic liquids (IL) followed by coating these MCM-41-supported IL compounds with silver salt to construct π-complexing adsorbent (AgBF4/IL•MCM-41) to enrich PPs from Ginkgo biloba leaves (GBL) extract. The mesoporous π-complexing sorbent was characterized by small-angle X-ray scattering (SAXS), FTIR, and nitrogen adsorption-desorption. The effect of the ratio of silver salt to IL•MCM-41 on the adsorption capacity of polyprenols from GBL was compared, and the dosage of AgBF4 was determined to be 1.5 mmol/g IL•MCM-41. Adsorption isotherms and kinetics indicate that the π-complexing adsorbent has excellent PPs adsorption performance (153 mg/g at 30 °C) and a fast adsorption rate (the time to reach adsorption equilibrium is 210 s). The PPs were separated using the fixed bed after treatment for only one cycle with AgBF4/IL•MCM-41, and the content of PPs in the product was increased from 38.54% to 70.2%, with a recovery rate of 86.6%. The π-complexing adsorbent showed excellent reusability for ≥3 adsorption-desorption cycles.


Subject(s)
Ginkgo biloba , Imidazoles , Ionic Liquids , Plant Leaves , Silicon Dioxide , Silver , Adsorption , Silicon Dioxide/chemistry , Ionic Liquids/chemistry , Silver/chemistry , Plant Leaves/chemistry , Ginkgo biloba/chemistry , Imidazoles/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Porosity , Kinetics
11.
Foods ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38672921

ABSTRACT

Ginkgo biloba leaves (GBLs), which comprise many phytoconstituents, also contain a toxic substance named ginkgolic acid (GA). Our previous research showed that heating could decarboxylate and degrade GA into ginkgols with high levels of bioactivity. Several methods are available to measure GA in GBLs, but no analytical method has been developed to measure ginkgols and GA simultaneously. Hence, for the first time, an HPLC-DAD method was established to simultaneously determine GA and ginkgols using acetonitrile (0.01% trifluoroacetic acid, v/v) as mobile phase A and water (0.01% trifluoroacetic acid, v/v) as mobile phase B. The gradient elution conditions were: 0-30 min, 75-90% phase A; 30-35 min, 90-90% phase A; 35-36 min, 90-75% phase A; 36-46 min, 75-75% phase A. The detection wavelength of GA and ginkgol were 210 and 270 nm, respectively. The flow rate and injection volume were 1.0 mL/min and 50 µL, respectively. The linearity was excellent (R2 > 0.999), and the RSD of the precision, stability, and repeatability of the total ginkgols was 0.20%, 2.21%, and 2.45%, respectively, in six parallel determinations. The recoveries for the low, medium, and high groups were 96.58%, 97.67%, and 101.52%, respectively. The limit of detection of ginkgol C13:0, C15:1, and C17:1 was 0.61 ppm, 0.50 ppm, and 0.06 ppm, respectively. The limit of quantification of ginkgol C13:0, C15:1, and C17:1 was 2.01 ppm, 1.65 ppm, and 0.20 ppm, respectively. Finally, this method accurately measured the GA and ginkgol content in ginkgo leaves and ginkgo tea products (ginkgo black tea, ginkgo dark tea, ginkgo white tea, and ginkgo green tea), whereas principal component analysis (PCA) was performed to help visualize the association between GA and ginkgols and five different processing methods for GBLs. Thus, this research provides an efficient and accurate quantitative method for the subsequent detection of GA and ginkgols in ginkgo tea.

12.
Animals (Basel) ; 14(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612286

ABSTRACT

The Taihu Dianzi pigeon is a breed native to China, and its special piebalding, crest, and polydactyly phenotypes are the result of artificial and natural selection. Here, we analyzed the genetic differences among three kinds of pigeons with different phenotypes at the genomic level. A selective sweep was conducted based on the fixation index (FST) and nucleotide diversity (π) ratio, and the results revealed that MC1R was related to the formation of the distinctive piebalding of the Taihu Dianzi pigeon. Combined with the results of genome-wide association studies, we identified candidate genes associated with the crest (SMYD and STOX2) and polydactyly (SLC52A3 and ANGPT4). The candidate genes identified in this study and their variants may be useful for understanding the genetic mechanism underlying the special phenotypes of the Taihu Dianzi pigeon. This study provides new insights into the genetic factors that may influence the formation of the special piebalding, crest, and polydactyly characteristics in pigeons.

13.
BMC Cancer ; 24(1): 384, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532314

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer mortality among Chinese females despite the low smoking prevalence among this population. This study assessed the roles of reproductive factors in lung cancer development among Chinese female never-smokers. METHODS: The prospective China Kadoorie Biobank (CKB) recruited over 0.5 million Chinese adults (0.3 million females) from 10 geographical areas in China in 2004-2008 when information on socio-demographic/lifestyle/environmental factors, physical measurements, medical history, and reproductive history collected through interviewer-administered questionnaires. Cox proportional hazard regression was used to estimate adjusted hazard ratios (HRs) of lung cancer by reproductive factors. Subgroup analyses by menopausal status, birth year, and geographical region were performed. RESULTS: During a median follow-up of 11 years, 2,284 incident lung cancers occurred among 282,558 female never-smokers. Ever oral contraceptive use was associated with a higher risk of lung cancer (HR = 1.16, 95% CI: 1.02-1.33) with a significant increasing trend associated with longer duration of use (p-trend = 0.03). Longer average breastfeeding duration per child was associated with a decreased risk (0.86, 0.78-0.95) for > 12 months compared with those who breastfed for 7-12 months. No statistically significant association was detected between other reproductive factors and lung cancer risk. CONCLUSION: Oral contraceptive use was associated with an increased risk of lung cancer in Chinese female never-smokers. Further studies are needed to assess lung cancer risk related to different types of oral contraceptives in similar populations.


Subject(s)
Lung Neoplasms , Reproductive History , Adult , Female , Humans , Biological Specimen Banks , China/epidemiology , Contraceptives, Oral , Prospective Studies , Risk Factors , Male , Non-Smokers
14.
J Hypertens ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38525868

ABSTRACT

OBJECTIVE: How traditional cardiovascular disease (CVD) risk factors are related to long-term blood pressure change (BPC) or trajectories remain unclear. We aimed to examine the independent associations of these factors with 15-year BPC and trajectories in Chinese adults. METHODS: We included 15 985 participants who had attended three surveys, including 2004-2008 baseline survey, and 2013-2014 and 2020-2021 resurveys, over 15 years in the China Kadoorie Biobank (CKB). We measured systolic and diastolic blood pressure (SBP and DBP), height, weight, and waist circumference (WC). We asked about the sociodemographic characteristics and lifestyle factors, including smoking, alcohol drinking, intake of fresh vegetables, fruits, and red meat, and physical activity, using a structured questionnaire. We calculated standard deviation (SD), cumulative blood pressure (cumBP), coefficient of variation (CV), and average real variability (ARV) as long-term BPC proxies. We identified blood pressure trajectories using the latent class growth model. RESULTS: Most baseline sociodemographic and lifestyle characteristics were associated with cumBP. After adjusting for other characteristics, the cumSBP (mmHg × year) increased by 116.9 [95% confidence interval (CI): 111.0, 122.7] for every 10 years of age. The differences of cumSBP in heavy drinkers of ≥60 g pure alcohol per day and former drinkers were 86.7 (60.7, 112.6) and 48.9 (23.1, 74.8) compared with less than weekly drinkers. The cumSBP in participants who ate red meat less than weekly was 29.4 (12.0, 46.8) higher than those who ate red meat daily. The corresponding differences of cumSBP were 127.8 (120.7, 134.9) and 70.2 (65.0, 75.3) for BMI per 5 kg/m2 and WC per 10 cm. Most of the findings of other BPC measures by baseline characteristics were similar to the cumBP, but the differences between groups were somewhat weaker. Alcohol drinking was associated with several high-risk trajectories of SBP and DBP. Both BMI and WC were independently associated with all high-risk blood pressure trajectories. CONCLUSIONS: Several traditional CVD risk factors were associated with unfavorable long-term BPC or blood pressure trajectories in Chinese adults.

15.
Plants (Basel) ; 13(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38475433

ABSTRACT

As one of the most prominent gene families, R2R3-MYB transcription factors significantly regulate biochemical and physiological processes under salt stress. However, in Sophora alopecuroides, a perennial herb known for its exceptional saline alkali resistance, the comprehensive identification and characterization of SaR2R3-MYB genes and their potential functions in response to salt stress have yet to be determined. We investigated the expression profiles and biological functions of SaR2R3-MYB transcription factors in response to salt stress, utilizing a transcriptome-wide mining method. Our analysis identified 28 SaR2R3-MYB transcription factors, all sharing a highly conserved R2R3 domain, which were further divided into 28 subgroups through phylogenetic analysis. Some SaR2R3-MYB transcription factors showed induction under salt stress, with SaR2R3-MYB15 emerging as a potential regulator based on analysis of the protein-protein interaction network. Validation revealed the transcriptional activity and nuclear localization of SaR2R3-MYB15. Remarkably, overexpression of SaR2R3-MYB15 in transgenic plants could increase the activity of antioxidant enzymes and the accumulation of proline but decrease the content of malondialdehyde (MDA), compared with wild-type plants. Moreover, several salt stress-related genes showed higher expression levels in transgenic plants, implying their potential to enhance salt tolerance. Our findings shed light on the role of SaR2R3-MYB genes in salt tolerance in S. alopecuroides.

16.
Front Pharmacol ; 15: 1344276, 2024.
Article in English | MEDLINE | ID: mdl-38313305

ABSTRACT

Aim: Diabetic sarcopenia leads to disability and seriously affects the quality of life. Currently, there are no effective therapeutic strategies for diabetic sarcopenia. Our previous studies have shown that inflammation plays a critical role in skeletal muscle atrophy. Interestingly, the connection between chronic inflammation and diabetic complications has been revealed. However, the effects of non-steroidal anti-inflammatory drug celecoxib on diabetic sarcopenia remains unclear. Materials and Methods: The streptozotocin (streptozotocin)-induced diabetic sarcopenia model was established. Rotarod test and grip strength test were used to assess skeletal muscle function. Hematoxylin and eosin and immunofluorescence staining were performed to evaluate inflammatory infiltration and the morphology of motor endplates in skeletal muscles. Succinate dehydrogenase (SDH) staining was used to determine the number of succinate dehydrogenase-positive muscle fibers. Dihydroethidium staining was performed to assess the levels of reactive oxygen species (ROS). Western blot was used to measure the levels of proteins involved in inflammation, oxidative stress, endoplasmic reticulum stress, ubiquitination, and autophagic-lysosomal pathway. Transmission electron microscopy was used to evaluate mitophagy. Results: Celecoxib significantly ameliorated skeletal muscle atrophy, improving skeletal muscle function and preserving motor endplates in diabetic mice. Celecoxib also decreased infiltration of inflammatory cell, reduced the levels of IL-6 and TNF-α, and suppressed the activation of NF-κB, Stat3, and NLRP3 inflammasome pathways in diabetic skeletal muscles. Celecoxib decreased reactive oxygen species levels, downregulated the levels of Nox2 and Nox4, upregulated the levels of GPX1 and Nrf2, and further suppressed endoplasmic reticulum stress by inhibiting the activation of the Perk-EIF-2α-ATF4-Chop in diabetic skeletal muscles. Celecoxib also inhibited the levels of Foxo3a, Fbx32 and MuRF1 in the ubiquitin-proteasome system, as well as the levels of BNIP3, Beclin1, ATG7, and LC3Ⅱ in the autophagic-lysosomal system, and celecoxib protected mitochondria and promoted mitochondrial biogenesis by elevating the levels of SIRT1 and PGC1-α, increased the number of SDH-positive fibers in diabetic skeletal muscles. Conclusion: Celecoxib improved diabetic sarcopenia by inhibiting inflammation, oxidative stress, endoplasmic reticulum stress, and protecting mitochondria, and subsequently suppressing proteolytic systems. Our study provides evidences for the molecular mechanism and treatment of diabetic sarcopenia, and broaden the way for the new use of celecoxib in diabetic sarcopenia.

17.
Vaccines (Basel) ; 12(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38400122

ABSTRACT

H5N1 highly pathogenic avian influenza virus (HPAIV) infections pose a significant threat to human health, with a mortality rate of around 50%. Limited global approval of H5N1 HPAIV vaccines, excluding China, prompted the need to address safety concerns related to MDCK cell tumorigenicity. Our objective was to improve vaccine safety by minimizing residual DNA and host cell protein (HCP). We developed a downstream processing method for the cell-based H5N1 HPAIV vaccine, employing CaptoTM Core 700, a multimodal resin, for polishing. Hydrophobic-interaction chromatography (HIC) with polypropylene glycol as a functional group facilitated the reversible binding of virus particles for capture. Following the two-step chromatographic process, virus recovery reached 68.16%. Additionally, HCP and DNA levels were reduced to 2112.60 ng/mL and 6.4 ng/mL, respectively. Western blot, high-performance liquid chromatography (HPLC), and transmission electron microscopy (TEM) confirmed the presence of the required antigen with a spherical shape and appropriate particle size. Overall, our presented two-step downstream process demonstrates potential as an efficient and cost-effective platform technology for cell-based influenza (H5N1 HPAIV) vaccines.

18.
Vaccines (Basel) ; 12(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38400201

ABSTRACT

The authors would like to make the following corrections to this published paper [...].

19.
Med Microbiol Immunol ; 213(1): 1, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329596

ABSTRACT

Circular RNAs (circRNAs) are non-coding RNAs discovered in recent years, which are produced by back-splicing involving the 3' and 5' ends of RNA molecules. There is increasing evidence that circRNAs have important roles in cancer, neurological diseases, cardiovascular and cerebrovascular diseases, and other diseases. In addition, host circRNAs and virus-encoded circRNAs participate in the body's immune response, with antiviral roles. This review summarizes the mechanisms by which host and viral circRNAs interact during the host immune response. Comprehensive investigations have revealed that host circRNAs function as miRNA sponges in a particular manner, primarily by inhibiting viral replication. Viral circRNAs have more diverse functions, which generally involve promoting viral replication. In addition, in contrast to circRNAs from RNA viruses, circRNAs from DNA viruses can influence host cell migration, proliferation, and apoptosis, along with their effects on viral replication. In summary, circRNAs have potential as diagnostic and therapeutic targets, offering a foundation for the diagnosis and treatment of viral diseases.


Subject(s)
Apoptosis , RNA, Circular , Cell Movement , Virus Replication
20.
Infect Drug Resist ; 17: 275-282, 2024.
Article in English | MEDLINE | ID: mdl-38298533

ABSTRACT

Purpose: Sangju-Yin, supplemented with some drugs, has frequently demonstrated therapeutic efficacy against colds, albeit its effect on Mycoplasma pneumoniae (MP) infection remains unknown. Therefore, we aimed to elucidate the treatment efficacy and influencing factors of a Sangju cough mixture on MP infection in adults. Patients and Methods: Between January 2021 and December 2022, 150 adult patients with MP infection at the Lishui Hospital of Traditional Chinese Medicine Affiliated with Zhejiang University of Traditional Chinese Medicine were assigned to the treatment (administered Sangju cough mixture and moxifloxacin tablets) or the control (administered moxifloxacin tablets) groups. Results: When compared with the control group, the treatment group exhibited significantly improved traditional Chinese medicine syndrome scores, increased CD4+ T cell levels, and decreased CD8+ T cell levels (all P < 0.05). After 7 days of treatment, the negative conversion rate of the MP-specific immunoglobulin M (MP-IgM) antibody of the treatment group was not significantly different from that of the control group (P > 0.05); however, after 14 days of treatment, the rate was significantly higher in the treatment group (P < 0.05). The univariate regression analysis revealed that combined chronic respiratory disease, failure to take Sangju cough mixture, combined pneumonia, Nutritional Risk Screening 2002 (NRS 2002) score of at least 3 points, and age were associated with the negative conversion of the MP-IgM antibody (all P < 0.05). Nevertheless, the multivariate regression model revealed that the NRS 2002 score of at least 3 points was not an independent risk factor (P > 0.05). Conclusion: Sangju cough mixture can improve symptoms, accelerate the negative conversion time of MP-IgM antibody, and promote rehabilitation of the patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...