Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 951
Filter
1.
bioRxiv ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38826297

ABSTRACT

Cell type specific (CTS) analysis is essential to reveal biological insights obscured in bulk tissue data. However, single-cell (sc) or single-nuclei (sn) resolution data are still cost-prohibitive for large-scale samples. Thus, computational methods to perform deconvolution from bulk tissue data are highly valuable. We here present EPIC-unmix, a novel two-step empirical Bayesian method integrating reference sc/sn RNA-seq data and bulk RNA-seq data from target samples to enhance the accuracy of CTS inference. We demonstrate through comprehensive simulations across three tissues that EPIC-unmix achieved 4.6% - 109.8% higher accuracy compared to alternative methods. By applying EPIC-unmix to human bulk brain RNA-seq data from the ROSMAP and MSBB cohorts, we identified multiple genes differentially expressed between Alzheimer's disease (AD) cases versus controls in a CTS manner, including 57.4% novel genes not identified using similar sample size sc/snRNA-seq data, indicating the power of our in-silico approach. Among the 6-69% overlapping, 83%-100% are in consistent direction with those from sc/snRNA-seq data, supporting the reliability of our findings. EPIC-unmix inferred CTS expression profiles similarly empowers CTS eQTL analysis. Among the novel eQTLs, we highlight a microglia eQTL for AD risk gene AP3B2, obscured in bulk and missed by sc/snRNA-seq based eQTL analysis. The variant resides in a microglia-specific cCRE, forming chromatin loop with AP3B2 promoter region in microglia. Taken together, we believe EPIC-unmix will be a valuable tool to enable more powerful CTS analysis.

2.
Adv Sci (Weinh) ; : e2308786, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696610

ABSTRACT

N6-methyladenosine (m6A) modification, installed by METTL3-METTL14 complex, is abundant and critical in eukaryotic mRNA. However, its role in oral mucosal immunity remains ambiguous. Periodontitis is a special but prevalent infectious disease characterized as hyperinflammation of oral mucosa and bone resorption. Here, it is reported that genetic deletion of Mettl3 alleviates periodontal destruction via suppressing NLRP3 inflammasome activation. Mechanistically, the stability of TNFAIP3 (also known as A20) transcript is significantly attenuated upon m6A modification. When silencing METTL3, accumulated TNFAIP3 functioning as a ubiquitin-editing enzyme facilitates the ubiquitination of NEK7 [NIMA (never in mitosis gene a)-related kinase 7], and subsequently impairs NLRP3 inflammasome assembly. Furtherly, Coptisine chloride, a natural small-molecule, is discovered as a novel METTL3 inhibitor and performs therapeutic effect on periodontitis. The study unveils a previously unknown pathogenic mechanism of METTL3-mediated m6A modifications in periodontitis and indicates METTL3 as a potential therapeutic target.

3.
J Med Virol ; 96(5): e29664, 2024 May.
Article in English | MEDLINE | ID: mdl-38727137

ABSTRACT

The causative agent of coronavirus disease 2019 (COVID-19), known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread accumulatively to 240 countries and continues to evolve. To gain a comprehensive understanding of the epidemiological characteristics of imported variants in China and their correlation with global circulating variants, genomic surveillance data from 11 139 imported COVID-19 cases submitted by Chinese provincial CDC laboratories between 2021 and 2022 were analyzed. Consensus sequences underwent rigorous quality checks, followed by amino acid mutations analysis using Nextclade. Sequences with satisfactory quality control status were classified according to the Pango nomenclature. The results showed that the dominant variants in imported cases reflected the global epidemic trend. An increase in the number of imported SARS-CoV-2 lineages monitored in China in the second half of 2022, and the circulating Omicron subvariants changed from the ancestral lineages of BA.5 and BA.2 into the lineages containing key amino acid mutations of spike protein. There was significant variation in the detection of Omicron subvariants among continents (χ2 = 321.968, p < 0.001) in the second half of 2022, with four lineages (BA.2.3.7, BA.2.2, BA.5.2.7, and XBB.1.2) identified through imported surveillance mainly prevalent respectively in Taiwan, China, Hong Kong SAR, China, Russian Federation, and Singapore. These findings revealed the alterations in circulating imported variants from 2021 to 2022 in China, reflecting the higher diversity of lineages in the second half of 2022, and revealed the predominant lineages of countries or regions that are in close contacts to China, providing new insights into the global prevalence of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , China/epidemiology , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/classification , Prevalence , Spike Glycoprotein, Coronavirus/genetics , Phylogeny , Mutation , Genome, Viral/genetics , Genetic Variation
4.
Curr Res Food Sci ; 8: 100747, 2024.
Article in English | MEDLINE | ID: mdl-38708099

ABSTRACT

Meat analogs are anticipated to alleviate environmental and animal welfare concerns as the demand for meat rises. High moisture extrusion is commonly employed to produce meat analogs, and its flavor could influence consumers' choice. To improve the development and market demand of extruded meat analogs, flavor precursors and natural spices have been used in high moisture extrusion process to directly improve the flavor profile of extruded meat analogs. Although there have been many studies on the flavor of high moisture extruded meat analogs, flavor composition and influencing factors have not been summarized. Thus, this review systematically provides the main pleasant and unpleasant flavor-active substances with 79 compounds, as well as descriptive the influence of flavor-active compounds, chemical reactions (such as lipid oxidation and the Maillard reaction), and fiber structure formation (based on extrusion process, extrusion parameters, and raw materials) on flavor of extruded meat analogs. Flavor evaluation of extruded meat analogs will toward multiple assessment methods to fully and directly characterize the flavor of extruded meat analogs, especially machine learning techniques may help to predict and regulate the flavor characteristics of extruded meat analogs.

5.
Int J Nanomedicine ; 19: 4081-4101, 2024.
Article in English | MEDLINE | ID: mdl-38736654

ABSTRACT

Purpose: Spinal cord injury (SCI) is an incurable and disabling event that is accompanied by complex inflammation-related pathological processes, such as the production of excessive reactive oxygen species (ROS) by infiltrating inflammatory immune cells and their release into the extracellular microenvironment, resulting in extensive apoptosis of endogenous neural stem cells. In this study, we noticed the neuroregeneration-promoting effect as well as the ability of the innovative treatment method of FTY720-CDs@GelMA paired with NSCs to increase motor function recovery in a rat spinal cord injury model. Methods: Carbon dots (CDs) and fingolimod (FTY720) were added to a hydrogel created by chemical cross-linking GelMA (FTY720-CDs@GelMA). The basic properties of FTY720-CDs@GelMA hydrogels were investigated using TEM, SEM, XPS, and FTIR. The swelling and degradation rates of FTY720-CDs@GelMA hydrogels were measured, and each group's ability to scavenge reactive oxygen species was investigated. The in vitro biocompatibility of FTY720-CDs@GelMA hydrogels was assessed using neural stem cells. The regeneration of the spinal cord and recovery of motor function in rats were studied following co-treatment of spinal cord injury using FTY720-CDs@GelMA hydrogel in combination with NSCs, utilising rats with spinal cord injuries as a model. Histological and immunofluorescence labelling were used to determine the regeneration of axons and neurons. The recovery of motor function in rats was assessed using the BBB score. Results: The hydrogel boosted neurogenesis and axonal regeneration by eliminating excess ROS and restoring the regenerative environment. The hydrogel efficiently contained brain stem cells and demonstrated strong neuroprotective effects in vivo by lowering endogenous ROS generation and mitigating ROS-mediated oxidative stress. In a follow-up investigation, we discovered that FTY720-CDs@GelMA hydrogel could dramatically boost NSC proliferation while also promoting neuronal regeneration and synaptic formation, hence lowering cavity area. Conclusion: Our findings suggest that the innovative treatment of FTY720-CDs@GelMA paired with NSCs can effectively improve functional recovery in SCI patients, making it a promising therapeutic alternative for SCI.


Subject(s)
Fingolimod Hydrochloride , Hydrogels , Neural Stem Cells , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/therapy , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/administration & dosage , Neural Stem Cells/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/administration & dosage , Rats , Recovery of Function/drug effects , Reactive Oxygen Species/metabolism , Quantum Dots/chemistry , Disease Models, Animal , Female , Spinal Cord/drug effects
6.
Biomater Sci ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758027

ABSTRACT

Due to the immunosuppressive tumor microenvironment (TME) and potential systemic toxicity, chemotherapy often fails to elicit satisfactory anti-tumor responses, so how to activate anti-tumor immunity to improve the therapeutic efficacy remains a challenging problem. Photothermal therapy (PTT) serves as a promising approach to activate anti-tumor immunity by inducing the release of tumor neoantigens in situ. In this study, we designed tetrasulfide bonded mesoporous silicon nanoparticles (MSNs) loaded with the traditional drug doxorubicin (DOX) inside and modified their outer layer with polydopamine (DOX/MSN-4S@PDA) for comprehensive anti-tumor studies in vivo and in vitro. The MSN core contains GSH-sensitive tetrasulfide bonds that enhance DOX release while generating hydrogen sulfide (H2S) to improve the therapeutic efficacy of DOX. The polydopamine (PDA) coating confers acid sensitivity and mild photothermal properties upon exposure to near-infrared (NIR) light, while the addition of hyaluronic acid (HA) to the outermost layer enables targeted delivery to CD44-expressing tumor cells, thereby enhancing drug accumulation at the tumor site and reducing toxic side effects. Our studies demonstrate that DOX/MSN@PDA-HA can reverse the immunosuppressive tumor microenvironment in vivo, inducing potent immunogenic cell death (ICD) of tumor cells and improving anti-tumor efficacy. In addition, DOX/MSN@PDA-HA significantly suppresses tumor metastasis to the lung and liver. In summary, DOX/MSN@PDA-HA exhibits controlled drug release, excellent biocompatibility, and remarkable tumor inhibition capabilities through synergistic chemical/photothermal combined therapy.

7.
Front Bioeng Biotechnol ; 12: 1395731, 2024.
Article in English | MEDLINE | ID: mdl-38742205

ABSTRACT

Purpose: Early gastrointestinal tumors can be removed by endoscopic procedures. Endoscopic mucosal dissection (ESD) requires submucosal fluid injection to provide mucosal elevation and prevent intraoperative perforation. However, the clinically applied normal saline mucosal elevation height is low for a short time, which often requires multiple intraoperative injections that increase the inconvenience and procedure time. In addition, recently researched submucosal injection materials (SIM) suffer from complex preparation, poor economy, and poor biocompatibility. Therefore, there is an urgent need for a new type of SIM that can provide long, safe and effective mucosal elevation in support of the endoscopic procedures. Methods: The FS hydrogel is based on polyethylene-polypropylene glycol (F-127) mixed with sodium alginate (SA). The different physicochemical properties of FS hydrogels were characterized through various experiments. Afterward, various biosafety assessments were carried out. Finally, the performance of FS hydrogels was evaluated by in vitro submucosal injection and in vivo swine ESD. Results: The experimental results show that the FS hydrogel is liquid at room temperature, making it easy to inject, and when injected under the mucosa, it undergoes temperature-induced cross-linking, transforming from a liquid to a solid state to provide long-lasting mucosal augmentation. At the same time, the FS hydrogel exhibits controllable gelation, stability, and biocompatibility. The results of in vitro submucosal injections and in vivo ESD procedures showed that FS achieves high mucosal augmentation and provides good submucosal cushioning in the long term. Conclusion: In summary, the F-127/SA hydrogel is simple to synthesize, cost-effective, safe, easy to store, and able to assist ESD well from the perspective of practical clinical problems, indicating that the FS hydrogel can be an ideal potent submucosal injection substitution.

8.
Article in English | MEDLINE | ID: mdl-38772992

ABSTRACT

The dynamic subsidence disaster caused by underground mining of coal resources is a complex spatiotemporal process, which is a common disaster in mining areas. The backfilling strip mining technology is a green and sustainable coal mining method, which has been commonly used to reduce the subsidence disaster of the overlying strata and protect surface buildings. The transient deformation is the main reason of surface buildings damage; therefore, in this study, the similar material model was used to research dynamic deformation characteristics of the overlying strata in backfilling strip mining at different time scales, and the optical image method was employed to monitor and obtain the movement data of the overlying strata automatically. The data analysis shows that there is a time-scale effect in mining subsidence. The deformation of the overlying strata increases instantaneously at a certain time under the monitoring of small time scale, and this phenomenon gradually disappears as time scales increase. According to the subsidence velocity of small time scale, the subsidence state of the overlying strata can be further divided into the abrupt subsidence state and the gentle subsidence state. This is really significant for promoting the development of the backfilling strip mining technology and preventing the damage of surface buildings.

9.
Science ; 384(6698): 846-848, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781382

ABSTRACT

Eliminating defects at interfaces enables perovskites to approach efficiency limits.

10.
Plant Physiol Biochem ; 211: 108708, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733938

ABSTRACT

S-Adenosyl-L-methionine (SAM) is widely involved in plant growth, development, and abiotic stress response. SAM synthetase (SAMS) is the key enzyme that catalyzes the synthesis of SAM from methionine and ATP. However, the SAMS gene family has not been identified and their functions have not been characterized in most Cucurbitaceae plants. Here, a total of 30 SAMS genes were identified in nine Cucurbitaceae species and they were categorized into 3 subfamilies. Physicochemical properties and gene structure analysis showed that the SAMS protein members are tightly conserved. Further analysis of the cis-regulatory elements (CREs) of SAMS genes' promoter implied their potential roles in stress tolerance. To further understand the molecular functions of SAMS genes, watermelon SAMSs (ClSAMSs) were chosen to analyze the expression patterns in different tissues and under various abiotic stress and hormone responses. Among the investigated genes, ClSAMS1 expression was observed in all tissues and found to be up-regulated by abiotic stresses including salt, cold and drought treatments as well as exogenous hormone treatments including ETH, SA, MeJA and ABA. Furthermore, knockdown of ClSAMS1 via virus-induced gene silencing (VIGS) decreased SAM contents in watermelon seedings. The pTRSV2-ClSAMS1 plants showed reduced susceptibility to drought, cold and NaCl stress, indicating a positive role of ClSAMS1 in abiotic stresses tolerance. Those results provided candidate SAMS genes to regulate plant resistance against abiotic stresses in Cucurbitaceae plants.


Subject(s)
Citrullus , Cucurbitaceae , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Citrullus/genetics , Citrullus/metabolism , Citrullus/enzymology , Cucurbitaceae/genetics , Cucurbitaceae/metabolism , Multigene Family , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Phylogeny , Genes, Plant , Genome, Plant/genetics , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics
11.
Sensors (Basel) ; 24(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732786

ABSTRACT

CO2 monitoring is important for carbon emission evaluation. Low-cost and medium-precision sensors (LCSs) have become an exploratory direction for CO2 observation under complex emission conditions in cities. Here, we used a calibration method that improved the accuracy of SenseAir K30 CO2 sensors from ±30 ppm to 0.7-4.0 ppm for a CO2-monitoring instrument named the SENSE-IAP, which has been used in several cities, such as in Beijing, Jinan, Fuzhou, Hangzhou, and Wuhan, in China since 2017. We conducted monthly to yearly synchronous observations using the SENSE-IAP along with reference instruments (Picarro) and standard gas to evaluate the performance of the LCSs for indoor use with relatively stable environments. The results show that the precision and accuracy of the SENSE-IAP compared to the standard gases were rather good in relatively stable indoor environments, with the short-term (daily scale) biases ranging from -0.9 to 0.2 ppm, the root mean square errors (RMSE) ranging from 0.7 to 1.6 ppm, the long-term (monthly scale) bias ranging from -1.6 to 0.5 ppm, and the RMSE ranging from 1.3 to 3.2 ppm. The accuracy of the synchronous observations with Picarro was in the same magnitude, with an RMSE of 2.0-3.0 ppm. According to our evaluation, standard instruments or reliable standard gases can be used as a reference to improve the accuracy of the SENSE-IAP. If calibrated daily using standard gases, the bias of the SENSE-IAP can be maintained within 1.0 ppm. If the standard gases are hard to access frequently, we recommend a calibration frequency of at least three months to maintain an accuracy within 3 ppm.

12.
Comput Biol Med ; 175: 108440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701589

ABSTRACT

The diagnosis of ankylosing spondylitis (AS) can be complex, necessitating a comprehensive assessment of medical history, clinical symptoms, and radiological evidence. This multidimensional approach can exacerbate the clinical burden and increase the likelihood of diagnostic inaccuracies, which may result in delayed or overlooked cases. Consequently, supplementary diagnostic techniques for AS have become a focal point in clinical research. This study introduces an enhanced optimization algorithm, SCJAYA, which incorporates salp swarm foraging behavior with cooperative predation strategies into the JAYA algorithm framework, noted for its robust optimization capabilities that emulate the evolutionary dynamics of biological organisms. The integration of salp swarm behavior is aimed at accelerating the convergence speed and enhancing the quality of solutions of the classical JAYA algorithm while the cooperative predation strategy is incorporated to mitigate the risk of convergence on local optima. SCJAYA has been evaluated across 30 benchmark functions from the CEC2014 suite against 9 conventional meta-heuristic algorithms as well as 9 state-of-the-art meta-heuristic counterparts. The comparative analyses indicate that SCJAYA surpasses these algorithms in terms of convergence speed and solution precision. Furthermore, we proposed the bSCJAYA-FKNN classifier: an advanced model applying the binary version of SCJAYA for feature selection, with the aim of improving the accuracy in diagnosing and prognosticating AS. The efficacy of the bSCJAYA-FKNN model was substantiated through validation on 11 UCI public datasets in addition to an AS-specific dataset. The model exhibited superior performance metrics-achieving an accuracy rate, specificity, Matthews correlation coefficient (MCC), F-measure, and computational time of 99.23 %, 99.52 %, 0.9906, 99.41 %, and 7.2800 s, respectively. These results not only underscore its profound capability in classification but also its substantial promise for the efficient diagnosis and prognosis of AS.


Subject(s)
Algorithms , Spondylitis, Ankylosing , Spondylitis, Ankylosing/diagnosis , Humans , Fuzzy Logic , Diagnosis, Computer-Assisted/methods
13.
J Biomed Res ; : 1-12, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38808558

ABSTRACT

Reliable molecular biomarkers to predict fertility remain scarce. The current study explored the potential of testis-specific circBOULE RNAs as biomarkers for male infertility and sperm quality. Using RT-PCR and RT-qPCR assays, we identified seven circular RNAs from the human BOULE gene in human sperm. We found that sperm circEx3-6 RNA exhibited a significantly decreased expression in asthenozoospermia while circEx2-6 and circEx2-7 expression decreased in teratozoospermia, compared with the controls. Furthermore, circEx2-6 expression exhibited a negative correlation with sperm DNA Fragmentation Index (DFI), and circEx2-7 levels were correlated with both fertilization and cleavage rates involving assisted reproductive technologies. Further functional analyses in a transgenic fly model lent support for the roles of circBOULE RNAs in sperm development and human fertility. Collectively, our findings support that sperm circBOULE RNAs may serve as diagnostic biomarkers for assessing sperm motility and DNA quality. Hence clinical application and significance of sperm circular RNAs in assisted reproductive technologies warrant further investigation.

14.
Ultrason Sonochem ; 107: 106902, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38797128

ABSTRACT

This study aimed to investigate the effects of ultrasonic treatment at different powers on the physicochemical properties, microstructure and quercetin delivery capacity of fermentation-induced soy protein isolate emulsion gel (FSEG). The FSEG was prepared by subjecting soy protein isolate (SPI) emulsion to ultrasonic treatment at various powers (0, 100, 200, 300, and 400 W), followed by lactic acid bacteria fermentation. Compared with the control group (0 W), the FSEG treated with ultrasound had higher hardness, water holding capacity (WHC) and rheological parameters. Particularly, at an ultrasonic power of 300 W, the FSEG had the highest hardness (101.69 ± 4.67 g) and WHC (75.20 ± 1.07%) (p < 0.05). Analysis of frequency sweep and strain scanning revealed that the storage modulus (G') and yield strains of FSEG increased after 300 W ultrasonic treatment. Additionally, the recovery rate after creep recovery test significantly increased from 18.70 ± 0.49% (0 W) to 58.05 ± 0.54% (300 W) (p < 0.05). Ultrasound treatment also resulted in an increased ß-sheet content and the formation of a more compact micro-network structure. This led to a more uniform distribution of oil droplets and reduced mobility of water within the gel. Moreover, ultrasonic treatment significantly enhanced the encapsulation efficiency of quercetin in FSEG from 81.25 ± 0.62 % (0 W) to 90.04 ± 1.54% (300 W). The bioaccessibility of quercetin also increased significantly from 28.90 ± 0.40% (0 W) to 42.58 ± 1.60% (300 W) (p < 0.05). This study enriches the induction method of soy protein emulsion gels and provides some references for the preparation of fermented emulsion gels loaded with active substances.

15.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798507

ABSTRACT

Polygenic risk scores (PRSs) are commonly used for predicting an individual's genetic risk of complex diseases. Yet, their implication for disease pathogenesis remains largely limited. Here, we introduce scPRS, a geometric deep learning model that constructs single-cell-resolved PRS leveraging reference single-cell chromatin accessibility profiling data to enhance biological discovery as well as disease prediction. Real-world applications across multiple complex diseases, including type 2 diabetes (T2D), hypertrophic cardiomyopathy (HCM), and Alzheimer's disease (AD), showcase the superior prediction power of scPRS compared to traditional PRS methods. Importantly, scPRS not only predicts disease risk but also uncovers disease-relevant cells, such as hormone-high alpha and beta cells for T2D, cardiomyocytes and pericytes for HCM, and astrocytes, microglia and oligodendrocyte progenitor cells for AD. Facilitated by a layered multi-omic analysis, scPRS further identifies cell-type-specific genetic underpinnings, linking disease-associated genetic variants to gene regulation within corresponding cell types. We substantiate the disease relevance of scPRS-prioritized HCM genes and demonstrate that the suppression of these genes in HCM cardiomyocytes is rescued by Mavacamten treatment. Additionally, we establish a novel microglia-specific regulatory relationship between the AD risk variant rs7922621 and its target genes ANXA11 and TSPAN14. We further illustrate the detrimental effects of suppressing these two genes on microglia phagocytosis. Our work provides a multi-tasking, interpretable framework for precise disease prediction and systematic investigation of the genetic, cellular, and molecular basis of complex diseases, laying the methodological foundation for single-cell genetics.

17.
Nat Struct Mol Biol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811792

ABSTRACT

Dysregulation and enhanced expression of MYC transcription factors (TFs) including MYC and MYCN contribute to the majority of human cancers. For example, MYCN is amplified up to several hundredfold in high-risk neuroblastoma. The resulting overexpression of N-myc aberrantly activates genes that are not activated at low N-myc levels and drives cell proliferation. Whether increasing N-myc levels simply mediates binding to lower-affinity binding sites in the genome or fundamentally changes the activation process remains unclear. One such activation mechanism that could become important above threshold levels of N-myc is the formation of aberrant transcriptional condensates through phase separation. Phase separation has recently been linked to transcriptional regulation, but the extent to which it contributes to gene activation remains an open question. Here we characterized the phase behavior of N-myc and showed that it can form dynamic condensates that have transcriptional hallmarks. We tested the role of phase separation in N-myc-regulated transcription by using a chemogenetic tool that allowed us to compare non-phase-separated and phase-separated conditions at equivalent N-myc levels, both of which showed a strong impact on gene expression compared to no N-myc expression. Interestingly, we discovered that only a small percentage (<3%) of N-myc-regulated genes is further modulated by phase separation but that these events include the activation of key oncogenes and the repression of tumor suppressors. Indeed, phase separation increases cell proliferation, corroborating the biological effects of the transcriptional changes. However, our results also show that >97% of N-myc-regulated genes are not affected by N-myc phase separation, demonstrating that soluble complexes of TFs with the transcriptional machinery are sufficient to activate transcription.

18.
Eur J Med Chem ; 272: 116506, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38761584

ABSTRACT

MDM2 genes amplification or altered expression is commonly observed in various cancers bearing wild-type TP53. Directly targeting the p53-binding pocket of MDM2 to activate the p53 pathway represents a promising therapeutic approach. Despite the development of numerous potent MDM2 inhibitors that have advanced into clinical trials, their utility is frequently hampered by drug resistance and hematologic toxicity such as neutropenia and thrombocytopenia. The emergence of PROTAC technology has revolutionized drug discovery and development, with applications in both preclinical and clinical research. Harnessing the power of PROTAC molecules to achieve MDM2 targeted degradation and p53 reactivation holds significant promise for cancer therapy. In this review, we summarize representative MDM2 PROTAC degraders and provide insights for researchers investigating MDM2 proteins and the p53 pathway.


Subject(s)
Antineoplastic Agents , Neoplasms , Proto-Oncogene Proteins c-mdm2 , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Molecular Structure , Animals , Proteolysis Targeting Chimera
19.
Microb Pathog ; 191: 106673, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705218

ABSTRACT

The Seneca Valley virus (SVV) is a recently discovered porcine pathogen that causes vesicular diseases and poses a significant threat to the pig industry worldwide. Erythropoietin-producing hepatoma receptor A2 (EphA2) is involved in the activation of the AKT/mTOR signaling pathway, which is involved in autophagy. However, the regulatory relationship between SVV and EphA2 remains unclear. In this study, we demonstrated that EphA2 is proteolysed in SVV-infected BHK-21 and PK-15 cells. Overexpression of EphA2 significantly inhibited SVV replication, as evidenced by decreased viral protein expression, viral titers, and viral load, suggesting an antiviral function of EphA2. Subsequently, viral proteins involved in the proteolysis of EphA2 were screened, and the SVV 3C protease (3Cpro) was found to be responsible for this cleavage, depending on its protease activity. However, the protease activity sites of 3Cpro did not affect the interactions between 3Cpro and EphA2. We further determined that EphA2 overexpression inhibited autophagy by activating the mTOR pathway and suppressing SVV replication. Taken together, these results indicate that SVV 3Cpro targets EphA2 for cleavage to impair its EphA2-mediated antiviral activity and emphasize the potential of the molecular interactions involved in developing antiviral strategies against SVV infection.


Subject(s)
3C Viral Proteases , Autophagy , Picornaviridae , Receptor, EphA2 , Signal Transduction , TOR Serine-Threonine Kinases , Viral Proteins , Virus Replication , Animals , Receptor, EphA2/metabolism , Receptor, EphA2/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Line , Swine , Picornaviridae/physiology , Picornaviridae/genetics , 3C Viral Proteases/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Proteolysis , Cricetinae , Host-Pathogen Interactions , Viral Load
20.
Mar Drugs ; 22(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786597

ABSTRACT

Abnormal melanogenesis can lead to hyperpigmentation. Tyrosinase (TYR), a key rate-limiting enzyme in melanin production, is an important therapeutic target for these disorders. We investigated the TYR inhibitory activity of hydrolysates extracted from the muscle tissue of Takifugu flavidus (TFMH). We used computer-aided virtual screening to identify a novel peptide that potently inhibited melanin synthesis, simulated its binding mode to TYR, and evaluated functional efficacy in vitro and in vivo. TFMH inhibited the diphenolase activities of mTYR, reducing TYR substrate binding activity and effectively inhibiting melanin synthesis. TFMH indirectly reduced cAMP response element-binding protein phosphorylation in vitro by downregulating melanocortin 1 receptor expression, thereby inhibiting expression of the microphthalmia-associated transcription factor, further decreasing TYR, tyrosinase related protein 1, and dopachrome tautomerase expression and ultimately impeding melanin synthesis. In zebrafish, TFMH significantly reduced black spot formation. TFMH (200 µg/mL) decreased zebrafish TYR activity by 43% and melanin content by 52%. Molecular dynamics simulations over 100 ns revealed that the FGFRSP (T-6) peptide stably binds mushroom TYR via hydrogen bonds and ionic interactions. T-6 (400 µmol/L) reduced melanin content in B16F10 melanoma cells by 71% and TYR activity by 79%. In zebrafish, T-6 (200 µmol/L) inhibited melanin production by 64%. TFMH and T-6 exhibit good potential for the development of natural skin-whitening cosmetic products.


Subject(s)
Melanins , Melanoma, Experimental , Monophenol Monooxygenase , Takifugu , Zebrafish , Animals , Melanins/biosynthesis , Takifugu/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Mice , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Cell Line, Tumor , Microphthalmia-Associated Transcription Factor/metabolism , Muscles/drug effects , Muscles/metabolism , Intramolecular Oxidoreductases/metabolism , Receptor, Melanocortin, Type 1/metabolism , Molecular Dynamics Simulation , Cyclic AMP Response Element-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...