Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731560

ABSTRACT

2, 6-diisopropylaniline (2, 6-DIPA) is a crucial non-intentionally organic additive that allows the assessment of the production processes, formulation qualities, and performance variations in biodegradable mulching film. Moreover, its release into the environment may have certain effects on human health. Hence, this study developed simultaneous heating hydrolysis-extraction and amine switchable hydrophilic solvent vortex-assisted homogeneous liquid-liquid microextraction for the gas chromatography-mass spectrometry analysis of the 2, 6-DIPA additive and its corresponding isocyanates in poly(butylene adipate-co-terephthalate) (PBAT) biodegradable agricultural mulching films. The heating hydrolysis-extraction conditions and factors influencing the efficiency of homogeneous liquid-liquid microextraction, such as the type and volume of amine, homogeneous-phase and phase separation transition pH, and extraction time were investigated and optimized. The optimum heating hydrolysis-extraction conditions were found to be a H2SO4 concentration of 2.5 M, heating temperature of 87.8 °C, and hydrolysis-extraction time of 3.0 h. As a switchable hydrophilic solvent, dipropylamine does not require a dispersant. Vortex assistance is helpful to speed up the extraction. Under the optimum experimental conditions, this method exhibits a better linearity (0.0144~7.200 µg mL-1 with R = 0.9986), low limit of detection and quantification (0.0033 µg g-1 and 0.0103 µg g-1), high extraction recovery (92.5~105.4%), desirable intra- and inter-day precision (relative standard deviation less than 4.1% and 4.7%), and high enrichment factor (90.9). Finally, this method was successfully applied to detect the content of the additive 2, 6-DIPA in PBAT biodegradable agricultural mulching films, thus facilitating production process monitoring or safety assessments.


Subject(s)
Amines , Aniline Compounds , Gas Chromatography-Mass Spectrometry , Hydrophobic and Hydrophilic Interactions , Liquid Phase Microextraction , Solvents , Liquid Phase Microextraction/methods , Gas Chromatography-Mass Spectrometry/methods , Solvents/chemistry , Amines/chemistry , Amines/analysis , Aniline Compounds/chemistry , Hydrolysis , Polyesters/chemistry
2.
Curr Microbiol ; 80(7): 218, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37204530

ABSTRACT

Tobacco mildew and tobacco-specific nitrosamines (TSNAs) affect the quality of tobacco products during fermentation. Microbes are thought to play key roles in the development of specific properties of fermented tobacco; however, little is known about the bacteria involved in the fermentation process. This study aims to identify key microbes related to mildew and TSNA formation. Tobacco was fermented at 25 °C, 35 °C, and 45 °C for 2, 4, and 6 weeks, with unfermented samples used as controls. Our preliminary exploration found that TSNAs content elevated with the increase of temperature and period, and mildew was easy to occur at low temperature with short period. Hence, samples were divided into three groups: the temperature gradient group (25 °C, 35 °C, and 45 °C for 6 weeks); the low-temperature group (control, 25 °C for 2, 4, and 6 weeks); and the high-temperature group (control, 45 °C for 2, 4, and 6 weeks). After collecting fermented tobacco leaves, 16S rRNA gene sequencing was used to explore the structure and dynamic changes of bacterial community during fermentation. Methylobacterium and Deinococcus were shared between the temperature gradient and high-temperature groups and showed a linear downward trend; these might play a role in the production of TSNAs. Massilia, Ruminiclostridium, and Cellulosilyticum species increased with prolonged fermentation time in the low-temperature group; this might be associated with tobacco mildew. In summary, the microbial diversity of fermented tobacco was explored under different conditions. These findings might provide data and material support to improve the quality of fermented tobacco products; however, further omics based studies are warranted to analysis the gene and protein expression patter in the identified bacteria.


Subject(s)
Nitrosamines , Nitrosamines/analysis , Nicotiana/chemistry , Fermentation , RNA, Ribosomal, 16S/genetics , Bacteria/genetics
3.
Front Plant Sci ; 13: 1073856, 2022.
Article in English | MEDLINE | ID: mdl-36561439

ABSTRACT

Tobacco black shank caused by Phytophthora nicotianae is a devastating disease that causes huge losses to tobacco production across the world. Investigating the regulatory mechanism of tobacco resistance to P. nicotianae is of great importance for tobacco resistance breeding. The jasmonate (JA) signaling pathway plays a pivotal role in modulating plant pathogen resistance, but the mechanism underlying JA-mediated tobacco resistance to P. nicotianae remains largely unclear. This work explored the P. nicotianae responses of common tobacco cultivar TN90 using plants with RNAi-mediated silencing of NtCOI1 (encoding the perception protein of JA signal), and identified genes involved in this process by comparative transcriptome analyses. Interestingly, the majority of the differentially expressed bHLH transcription factor genes, whose homologs are correlated with JA-signaling, encode AtBPE-like regulators and were up-regulated in NtCOI1-RI plants, implying a negative role in regulating tobacco response to P. nicotianae. A subsequent study on NtbHLH49, a member of this group, showed that it's negatively regulated by JA treatment or P. nicotianae infection, and its protein was localized to the nucleus. Furthermore, overexpression of NtbHLH49 decreased tobacco resistance to P. nicotianae, while knockdown of its expression increased the resistance. Manipulation of NtbHLH49 expression also altered the expression of a set of pathogen resistance genes. This study identified a set of genes correlated with JA-mediated tobacco response to P. nicotianae, and revealed the function of AtBPE-like regulator NtbHLH49 in regulating tobacco resistance to this pathogen, providing insights into the JA-mediated tobacco responses to P. nicotianae.

4.
Sci Rep ; 12(1): 18309, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316337

ABSTRACT

Tobacco bacterial wilt has seriously affected tobacco production. Ethyl methanesulfonate (EMS) induced tobacco bacterial wilt resistant mutants are important for the control of tobacco bacterial wilt. High-throughput sequencing technology was used to study the rhizosphere bacterial community assemblages of bacterial wilt resistant mutant tobacco rhizosphere soil (namely KS), bacterial wilt susceptible tobacco rhizosphere soil (namely GS) and bulk soil (namely BS) in Xuancheng, Huanxi, Yibin and Luzhou. Alpha analysis showed that the bacterial community diversity and richness of KS and GS in the four regions were not significantly different. However, analysis of intergroup variation in the top 15 bacterial communities in terms of abundance showed that the bacterial communities of KS and GS were significantly different from BS, respectively. In addition, pH, alkali-hydrolysable nitrogen (AN) and soil organic carbon (SOC) were positively correlated with the bacterial community of KS and negatively correlated with GS in the other three regions except Huanxi. Network analysis showed that the three soils in the four regions did not show a consistent pattern of network complexity. PICRUSt functional prediction analysis showed that the COG functions were similar in all samples. All colonies were involved in RNA processing and modification, chromatin structure and dynamics, etc. In conclusion, our experiments showed that rhizosphere bacterial communities of tobacco in different regions have different compositional patterns, which are strongly related to soil factors.


Subject(s)
Nicotiana , Rhizosphere , Nicotiana/microbiology , Soil Microbiology , Soil/chemistry , Carbon , Biodiversity , Bacteria/genetics
5.
Front Microbiol ; 13: 1026680, 2022.
Article in English | MEDLINE | ID: mdl-36312940

ABSTRACT

Tobacco contains a large amount of bioactive ingredients which can be used as source of feed. The objective of this study was to evaluate the effects of dietary addition of low-nicotine tobacco (LNT) on the growth performance, blood status, cecum microbiota and metabolite composition of meat rabbits. A total of 80 Kangda meat rabbits of similar weight were assigned randomly as four groups, and three of them were supplemented with 5%, 10%, and 20% LNT, respectively, with the other one fed with basal diet as control group. Each experiment group with 20 rabbits was raised in a single cage. The experiments lasted for 40 days with a predictive period of 7 days. The results revealed that LNT supplementation had no significant effect on the growth performance, but increased the half carcass weight compared with control group. Dietary supplemention of LNT decreased the triglycerides and cholesterol content in rabbit serum, and significantly increased the plasma concentration of lymphocytes (LYM), monocytes, eosinophils, hemoglobin HGB and red blood cells. In addition, LNT supplementation significantly changed the microbial diversity and richness, and metagenomic analysis showed that LNT supplementation significantly increased Eubacterium_siraeum_group, Alistipes, Monoglobus and Marvinbryantia at genus level. Moreover, LC-MS data analysis identified a total of 308 metabolites that markedly differed after LNT addition, with 190 significantly upregulated metabolites and 118 significantly downregulated metabolites. Furthermore, the correlation analysis showed that there was a significant correlation between the microbial difference and the rabbit growth performance. Overall, these findings provide theoretical basis and data support for the application of LNT in rabbits.

6.
Front Microbiol ; 13: 895537, 2022.
Article in English | MEDLINE | ID: mdl-35572634

ABSTRACT

The human oral cavity provides a habitat for oral microbial communities. The complexity of its anatomical structure, its connectivity to the outside, and its moist environment contribute to the complexity and ecological site specificity of the microbiome colonized therein. Complex endogenous and exogenous factors affect the occurrence and development of the oral microbiota, and maintain it in a dynamic balance. The dysbiotic state, in which the microbial composition is altered and the microecological balance between host and microorganisms is disturbed, can lead to oral and even systemic diseases. In this review, we discuss the current research on the composition of the oral microbiota, the factors influencing it, and its relationships with common oral diseases. We focus on the specificity of the microbiota at different niches in the oral cavity, the communities of the oral microbiome, the mycobiome, and the virome within oral biofilms, and interventions targeting oral pathogens associated with disease. With these data, we aim to extend our understanding of oral microorganisms and provide new ideas for the clinical management of infectious oral diseases.

7.
Environ Res ; 207: 112147, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34606841

ABSTRACT

As a platform for enzyme immobilization, metal-organic frameworks (MOFs) can protect enzyme activity from the interference of external adverse environment. Although these strategies have been proven to produce good results, little consideration has been given to the functional similarity of MOFs to the encapsulated enzyme. Here, catalase (CAT) was encapsulated in Fe-BTC with peroxidase-like activity to obtain a stable composite (CAT@Fe-BTC) with synergistic catalytic activity. Depending on the superior selectivity and high catalytic activity of CAT@Fe-BTC, colorimetric sensing for the detection of hydrogen peroxide and phenol was developed. This work demonstrates that the integration of functional MOFs with natural enzyme can be well applied to the construction of efficient catalysts.


Subject(s)
Metal-Organic Frameworks , Catalase , Catalysis , Colorimetry , Hydrogen Peroxide
8.
Microb Pathog ; 128: 1-6, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30576714

ABSTRACT

Carbapenem-resistant Enterobacteriaceae strains as a new serious threat for the public health have been increasingly reported worldwide. In this study, one multi-resistant Escherichia coli strain ZSH6 which co-carried blaKPC-2, blaNDM-5 and blaCTX-M, was isolated from human blood sample. By using plasmid conjugation experiments, ZSH6 was found to harbor three plasmids carrying the blaNDM-5 gene, the blaKPC-2 and blaCTX-M gene, respectively. Whole-genome sequencing of ZSH6 yielded 122 scaffolds of chromosomal DNA and three circular plasmids including pZSH6-blaKPC-2 (46,319 bp), pZSH6-blaNDM-5 (46,161bp) and pZSH6-blaCTX-M (184,723). The isolate was classified to Sequence Type 2 and to the O89: H10 serotype. The results of genome analyses revealed that ZSH6 carried three virulence factors (capU, gad and iss) and twenty resistance genes [blaKPC-2blaNDM-5, blaCTX-M-3, blaCTX-M-65, blaTEM-1, floR, tet(A), tet(B), dfrA17, aadA5, sul1, mdf(A), mph(A), erm(B), aph(3')-Ia, aph(3')-Ib, aph(4)-Ia, aph(6)-Id, aac(3)-Iva, aac(3)-IId]. Therefore, the co-existence of such a large number of resistance genes in multiple plasmids making ZSH6 highly resistant to almost all kinds of commonly used antibiotics, and brings a serious challenge for resistance control and clinical treatment of infections caused by this bacterium.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Plasmids/genetics , Serogroup , beta-Lactamases/genetics , Aged, 80 and over , Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae , China , Escherichia coli/classification , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Escherichia coli Infections/blood , Escherichia coli Infections/microbiology , Genes, Bacterial/genetics , Genome, Bacterial , Genotype , Humans , Male , Phylogeny , Pneumonia/microbiology , Virulence Factors/genetics , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...