Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 14: 1171892, 2023.
Article in English | MEDLINE | ID: mdl-37347053

ABSTRACT

Background: The evolutionary and epidemiological history and the regional differences of various hepatitis C virus (HCV) genotypes are complex. Our aim was to better understand the molecular epidemiology and evolutionary dynamics of HCV among HIV/HCV co-infected individuals in Guizhou Province. This information could contribute to improve HCV prevention and control strategies in Guizhou and surrounding provinces. Methods: The HCV RNA was extracted from the serum of HIV/HCV co-infected patients, and reverse transcription/nested PCR was performed to amplify nucleotide sequences of the C-E1 region. Then, the successfully amplified sequences were selected for phylogenetic analysis. The available C-E1 region reference sequences from the surrounding provinces of Guizhou (Guangxi, Yunnan, Hunan, and Sichuan) were retrieved in GenBank, and the evolutionary analysis by Bayesian Markov chain Monte Carlo (MCMC) algorithm was performed using BEAST software to reconstruct a phylogeographic tree in order to explore their migration patterns. Finally, the epidemiological history of HCV in the Guizhou region was retraced by reconstructing Bayesian skyline plots (BSPs) after excluding sequences from surrounding provinces. Results: Among 186 HIV/HCV co-infected patients, the C-E1 region sequence was successfully amplified in 177 cases. Phylogenetic analysis classified these sequences into six subtypes: 1a, 1b, 3a, 3b, 6a, and 6n. Among them, subtype 6a was the most dominant strain (n = 70), followed by 3b (n = 55), 1b (n = 31), 3a (n = 11), 1a (n = 8), and 6n (n = 2). By reconstructing the phylogeographic tree, we estimated that the 6a strain in Guizhou mainly originated from Yunnan and Guangxi, while the 3b strain emerged due to transmission from the IDU network in Yunnan. Subtypes 1b, 3a, 3b, and 6a, as the major subtypes of HCV in HIV/HCV co-infected individuals in Guizhou, emerged and later grew more rapidly than the national average. Notably, BSPs of the currently prevalent HCV predominant strain subtype 6a in Guizhou have shown a rapid population growth since 2004. Although the growth rate slowed down around 2010, this growth has continued to date. Conclusion: Overall, despite the improvement and implementation of a series of HCV prevention and control policies and measures, a delayed growth pattern may indicate a unique history of the spread of 6a in Guizhou. Its trend as the dominant strain in Guizhou in recent years may continue to increase slowly over subsequent years.

2.
J Gastroenterol Hepatol ; 27(5): 882-7, 2012 May.
Article in English | MEDLINE | ID: mdl-22098192

ABSTRACT

BACKGROUND AND AIM: The aim of this study was to determine whether the use of the narrow band imaging (NBI) system could enhance the accuracy of adenoma detection during an endoscopic examination of the colon and rectum. METHODS: MEDLINE, EMBASE, and the Cochrane Library databases were searched along with a hand search of abstracts from relevant conferences up to June 2011. The rates of adenoma and flat adenoma detection, and withdrawal time were analyzed using Review Manager 4.2. RESULTS: A total of 3049 subjects in eight trials were included. Meta-analysis revealed that there was no statistically significant difference in the rates of adenoma detection between the NBI group and the white light colonoscopy group (pooled relative risk [RR]: 1.09, 95% confidence interval [CI]: 1.00-1.19, P = 0.05). However, after exclusion of high-definition television modalities, the rate of adenoma detection by NBI was significantly higher than that by white light, particularly for patients with one adenoma (pooled RR 1.36, 95%CI 1.07-1.71, P = 0.02). Endoscopy with the NBI system significantly increased the rate of flat adenoma detection (pooled RR 1.96, 95%CI 1.09-3.52, P = 0.02). However, endoscopy with NBI had longer withdrawal time than that with white light (pooled weighted mean difference: 0.90, 95%CI: 0.38-1.42, P = 0.0006). CONCLUSIONS: Endoscopy with NBI seems to improve the detection of flat adenomas, particularly with high-definition technology, but prolongs the withdrawal time. These results indicate that endoscopy routinely using the NBI system for the surveillance of adenomas may be recommended after the technique is further modified.


Subject(s)
Adenoma/diagnosis , Colonoscopy/methods , Colorectal Neoplasms/diagnosis , Image Enhancement , Adenoma/pathology , Color , Colorectal Neoplasms/pathology , Humans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...