Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1714: 464539, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38091713

ABSTRACT

With the recent development of small particle stationary-phases and dedicated instrumentation, the combination of size-exclusion chromatography (SEC) with ultra-high performance liquid chromatography (UHPLC) technology has been realized. It opened up a new polymer analysis technique called UHP-SEC. Although high resolution and fast analysis can be achieved, the multi-solvent suitability for a given column was limited to either organic or aqueous eluents. In this work, the capability of novel SEC columns (AdvanceBio SEC columns) packed with 1.9 µm particles for the characterization of synthetic polymers in organic solvents as well as the multi-solvent compatibility for organic and aqueous eluents have been demonstrated. About six times faster separation for both polystyrene (PS) and polyethylene glycol (PEG) with good peak shape and repeatability were achieved in comparison with standard SEC columns at comparable resolution. Especially for PEG, in contrast to other SEC columns, this column could provide close-to-accurate determination of molecular weights with tetrahydrofuran (THF) as mobile phase. Good reproducibility was obtained after switching several times from water to THF and vice versa with RSD% in retention times less than 0.5 %. Different samples such as polyols, isocyanates and additives can also be analyzed for molecular weight and distribution or composition determination. Volume overload, especially with injection volumes higher than 10 µL needs to be considered. This new column offers a powerful choice for oligomer and polymer analysis with both aqueous and organic mobile phase. Ultimately, hyphenating SEC columns to various detectors can enable more information regarding chemical composition, molecular weight, concentration, and structure.


Subject(s)
Polymers , Water , Solvents/chemistry , Reproducibility of Results , Polymers/chemistry , Water/chemistry , Polyethylene Glycols , Chromatography, Gel , Chromatography, High Pressure Liquid/methods
2.
Anal Methods ; 13(1): 124-132, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33319877

ABSTRACT

Comprehensive heart-cut multidimensional gas chromatography (CH/C MDGC) without a cryogenic trapping device was developed with an established approach for calculation of first and second dimensional retention indices (1I and 2I) for improved compound identification. A first dimensional (1D) DB-1MS column (60 m) and a second dimensional (2D) DB-WAX column (60 m) were applied with a Deans switch (DS) using a constant H/C window of 0.2 min and a periodic multiple heartcut strategy comprising 225H/C throughout the CH/C. 1I was calculated based on comparison of the middle of the heartcut time with the alkane retention times on the 1D column. A multi-location peak parking approach using sixteen sets of automated injections of alkane references was also established with the least square curve fitting method for construction of the alkane isovolatility curves which were applied for 2I calculation. The untargeted compound analysis of a perfume sample was then performed according to comparison with the libraries of mass spectra, 1I and 2I. The CH/C MDGC system with a 25 h analysis time showed a peak capacity (nc) of 9198 and 128 separated peaks with 71 compounds successfully identified according to MS, 1I and 2I library match under the established error approximation criteria. Furthermore, relationship between the analysis time and number of separated peaks was proposed based on the set of 84 identifiable compounds. With the compensation of lower separation performance and greater I errors, the analysis time could be reduced by applying a 2.5 min H/C window with a total analysis time of 2 h and nc of 1134.

3.
RSC Adv ; 11(14): 7946-7953, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-35423345

ABSTRACT

Experimental and data analysis approaches in multidimensional gas chromatography (MDGC) comprising comprehensive multiple heart-cut (H/C) and comprehensive two dimensional GC (GC × GC) were developed with an example application illustrated for analysis of a technical glycol precursor sample. The GC × GC system employed a long 1D (30 m) and a short 2D (5 m) column with a flow modulator and a Deans switch (DS) as a splitter; meanwhile. The H/C system was applied solely as a DS located between long 1D (30 m) and 2D (60 m) columns without use of cryogenic trapping devices. The effects of injection time and 2D column flow in GC × GC and the impacts of H/C window and number of injections (total analysis time) in H/C analysis were investigated. The analysis performance for each condition was evaluated according to peak capacity and number of separated compounds. The continuum between the two techniques was then established via the relationship between analysis time and analysis performance. The separation performances were improved with longer analysis time so that the suitable condition was selected within this compromise. Under the selected conditions, volatile compounds in the technical glycol precursor sample were identified according to the match between the experimental MS spectra and first dimensional retention indices (1 I) with that from the NIST2014 database and literature. An hour analysis with GC × GC resulted in a total peak capacity of 798, number of separated peaks of 61 and average MS match score of 887 ± 35; meanwhile, the corresponding numbers were improved to be 9198, 107 and 898 ± 24, respectively, with the 25 h comprehensive H/C analysis.

4.
J Sep Sci ; 42(17): 2826-2834, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31250513

ABSTRACT

A gas chromatographic approach for the determination and quantification of trace levels of carbon oxides in gas phase matrices for in situ or near-line/at-line analysis has been successfully developed. Catalytic conversion of the target compounds to methane via the methanation process was conducted inside a metal 3D-printed jet that also acted as a hydrogen burner for the flame ionization detector. Modifications made to a field transportable gas chromatograph enabled the leveraging of advantaged microfluidic-enhanced chromatography capability for improved chromatographic performance and serviceability. The compatibility with adsorption chromatography technology was demonstrated with in-house constructed columns. Sustained reliable conversion efficiencies of greater than 99% with respectable peak symmetries were attained at 400°C. Quantification of carbon monoxide and carbon dioxide at a parts-per-million level over a range from 0.2 ppm to 5% v/v for both compounds with a respectable precision of less than 3% relative standard deviation for peak area (n = 10) and a detection limit of 0.1 ppm v/v was achieved. Linearity with correlation coefficients of R2 greater than 0.9995 and measured recoveries of >99% for spike tests were achieved. The 3D-printed steel jet was found to be reliable and resilient against potential contamination from the matrices owing to the in situ backflushing capability.

SELECTION OF CITATIONS
SEARCH DETAIL
...