Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 2521, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424053

ABSTRACT

In 2023, the development of El Niño is poised to drive a global upsurge in surface air temperatures (SAT), potentially resulting in unprecedented warming worldwide. Nevertheless, the regional patterns of SAT anomalies remain diverse, obscuring where historical warming records may be surpassed in the forthcoming year. Our study underscores the significant influence of El Niño and the persistence of climate signals on the inter-annual variability of regional SAT, both in amplitude and spatial distribution. The likelihood of global mean SAT exceeding historical records, calculated from July 2023 to June 2024, is estimated at 90%, contingent upon annual-mean sea surface temperature anomalies in the eastern equatorial Pacific exceeding 0.6 °C. Regions particularly susceptible to recording record-high SAT include coastal and adjacent areas in Asia such as the Bay of Bengal and the South China Sea, as well as Alaska, the Caribbean Sea, and the Amazon. This impending warmth heightens the risk of year-round marine heatwaves and escalates the threat of wildfires and other negative consequences in Alaska and the Amazon basin, necessitating strategic mitigation measures to minimize potential worst-case impacts.

2.
Environ Sci Technol ; 56(17): 12024-12035, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35943239

ABSTRACT

Wetlands are large sinks of carbon dioxide (CO2) and sources of methane (CH4). Both fluxes can be altered by wetland management (e.g., restoration), leading to changes in the climate system. Here, we use multiple models to assess CH4 emissions and CO2 sequestration from the wetlands in China and the impacts on climate under three climate scenarios and four wetland management scenarios with various levels of wetland restoration in the 21st century. We find that wetland restoration leads to increased CH4 emissions with a national total of 0.32-11.31 Tg yr-1. These emissions induce an additional radiative forcing of 0.0005-0.0075 W m-2 yr-1 and global annual mean air temperature rise of 0.0003-0.0053 °C yr-1, across all future climate and management scenarios. However, wetland restoration also resulted in net CO2 sequestration, leading to a combined net greenhouse gas sink in all climate management scenarios, except in the highest restoration level combined with the hottest climate scenario. The highest climate cooling was achieved under medium restoration, with the climate scenario consistent with the Paris agreement target of below 2 °C, with a cumulative global warming potential of -3.2 Pg CO2-eq (2020-2100). Wetland restoration in the Qinghai-Tibet Plateau offers the greatest cooling effect.


Subject(s)
Methane , Wetlands , Carbon Dioxide/analysis , China , Feedback , Methane/analysis
3.
Entropy (Basel) ; 23(3)2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33799929

ABSTRACT

Recently, it has been shown that the information flow and causality between two time series can be inferred in a rigorous and quantitative sense, and, besides, the resulting causality can be normalized. A corollary that follows is, in the linear limit, causation implies correlation, while correlation does not imply causation. Now suppose there is an event A taking a harmonic form (sine/cosine), and it generates through some process another event B so that B always lags A by a phase of π/2. Here the causality is obviously seen, while by computation the correlation is, however, zero. This apparent contradiction is rooted in the fact that a harmonic system always leaves a single point on the Poincaré section; it does not add information. That is to say, though the absolute information flow from A to B is zero, i.e., TA→B=0, the total information increase of B is also zero, so the normalized TA→B, denoted as τA→B, takes the form of 00. By slightly perturbing the system with some noise, solving a stochastic differential equation, and letting the perturbation go to zero, it can be shown that τA→B approaches 100%, just as one would have expected.

5.
Sci Rep ; 4: 6634, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-25319109

ABSTRACT

Understanding new particle formation and their subsequent growth in the troposphere has a critical impact on our ability to predict atmospheric composition and global climate change. High pre-existing particle loadings have been thought to suppress the formation of new atmospheric aerosol particles due to high condensation and coagulation sinks. Here, based on field measurements at a mountain site in South China, we report, for the first time, in situ observational evidence on new particle formation and growth in remote ambient atmosphere during heavy dust episodes mixed with anthropogenic pollution. Both the formation and growth rates of particles in the diameter range 15-50 nm were enhanced during the dust episodes, indicating the influence of photo-induced, dust surface-mediated reactions and resulting condensable vapor production. This study provides unique in situ observations of heterogeneous photochemical processes inducing new particle formation and growth in the real atmosphere, and suggests an unexpected impact of mineral dust on climate and atmospheric chemistry.

6.
Cancer Lett ; 344(2): 195-203, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24211326

ABSTRACT

MicroRNA-449a (miR-449a) was significantly downregulated in 156 lung cancer tissues (p<0.001). We found that the low expression of miR-449a was highly correlated with cancer recurrence and survival of lung cancer patients. The transient introduction of miR-449a caused cell cycle arrest and cell senescence in A549 and 95D cells. Further studies revealed that E2F3 was a direct target of miR-449a in lung cancer cells. miR-449a also suppressed tumor formation in vivo in nude mice. These results suggest that miR-449a plays an important role in lung cancer tumorigenesis and that miR-449a might predict cancer recurrence and survival of lung cancer patients.


Subject(s)
E2F3 Transcription Factor/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , Animals , Carcinogenesis/genetics , Cell Cycle Checkpoints/genetics , Cell Growth Processes/genetics , Cell Line, Tumor , Cellular Senescence/genetics , Female , Genes, Tumor Suppressor , Humans , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Transfection
7.
Int J Pharm ; 450(1-2): 44-52, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23608201

ABSTRACT

Small interfering RNA (siRNA) has tremendous potential as a therapeutic agent for diverse diseases; however, due to its susceptibility to degradation and poor cellular uptake, the low efficiency of administration has been the most important limiting factor for clinical applications of siRNA. Herein, we synthesized alkyl chain modified low-molecular-weight polyethylenimines (LMW PEIs) and found that hydrophobically modified PEIs displayed enhanced efficiency in siRNA-mediated knockdown of target genes. To elucidate the mechanism for increased delivery, we characterized the polymers' physicochemical properties and bioactivity via nuclear magnetic resonance (NMR), gel retardation assay, dynamic laser scattering (DLS) analysis, confocal laser scanning microscopy and flow cytometry. The hydrophobic modification reduced siRNA binding affinity but facilitated the formation of nanoparticles in contrast to the original PEI. The PEIs with eight and thirteen alkyl tails were able to self-assemble into nanoparticles and yielded higher cellular uptake, which leaded to even similar efficiencies of 80-90% knockdown as Lipofectamine™ 2000 control. These results suggested that the status of polymers in aqueous solution, which depended on the degree of hydrophobic modification, played an important role in the uptake of siRNA. Therefore, we provided new information on the role of hydrophobic content in the enhanced gene silencing activity.


Subject(s)
Acrylamides/chemistry , Gene Silencing , Polyethyleneimine/chemistry , RNA, Small Interfering/chemistry , Cell Line, Tumor , Cell Membrane Permeability , Hemolysis , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Weight , RNA, Small Interfering/administration & dosage , Transfection
8.
Acta Biomater ; 9(4): 6019-31, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23295402

ABSTRACT

A non-viral siRNA carrier composed of mono-methoxy-poly (3-hydroxybutyrate-co-4-hydroxybutyrate)-block-polyethylene glycol-block-linear polyethyleneimine (mP3/4HB-b-PEG-b-lPEI) was synthesized using 1800 Da linear polyethyleneimine and evaluated for siRNA delivery. Our study demonstrated that siRNA could be efficiently combined with mP3/4HB-b-PEG-b-lPEI (mAG) co-polymer and was protected from nuclease degradation. The combined siRNA were released from the complexes easily under heparin competition. The particle size of the mAG/siRNA complexes was 158 nm, with a ζ-potential of around 28 mV. Atomic force microscopy images displayed spherical and homogeneously distributed complexes. The mAG block co-polymer displayed low cytotoxicity and efficient cellular uptake of Cy3-siRNA in A549 cells by flow cytometry and confocal microscopy. In vitro transfection efficiency of the block co-polymer was assessed using siRNA against luciferase in cultured A549-Luc, HeLa-Luc, HLF-Luc, A375-Luc and MCF-7-Luc cells. A higher transfection efficiency and lower cytotoxicity was obtained by mAG block co-polymer in five cell lines. Furthermore, a remarkable improvement in luciferase gene silencing efficiency of the mAG complex (up to 90-95%) over that of Lipofectamine™ 2000 (70-82%) was observed in HLF-Luc and A375-Luc cells. Additionally, a mAG/p65-siRNA complex also showed a better capability than Lipofectamine™ 2000/p65-siRNA complex to drastically reduce the p65 mRNA level down to 10-16% in HeLa, U251 and HUVEC cells at an N/P ratio of 70.


Subject(s)
Gene Silencing , Nanocapsules/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polyethyleneimine/analogs & derivatives , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Transfection/methods , Diffusion , Nanocapsules/ultrastructure , Particle Size , Polyethyleneimine/chemistry
9.
Biomaterials ; 33(7): 2334-44, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22154621

ABSTRACT

A class of non-viral siRNA vectors consisting of biodegradable poly(hydroxyalkanoates) (PHA) grafted onto branched poly(ethyleneimine) (bPEI, 25 kDa) was synthesized and evaluated for siRNA delivery. The mPHA-g-bPEI copolymers were synthesized through Michael addition between acrylated mono-methoxy-poly(hydroxyalkanoates) (mPHA-acrylated) and bPEI with various block length poly(hydroxyalkanoates) from 1300 to 2900 Da. Our research showed that mPHA-g-bPEI copolymers could effectively bind siRNA, protect it from degradation by nucleases and efficiently release the complexed siRNA in the presence of low concentrations of polyanionic heparin. The particle size of mPHA-g-bPEI/siRNA complexes was <200 nm with ζ-potential between 33 and 43 mV. mPHA-g-bPEI copolymers displayed low cytotoxicity compared to unmodified bPEI and efficient cellular uptake of Cy3-siRNA in A549 cells by flow cytometry and confocal microscopy. siRNA delivery efficiency of the copolymers was assessed by siRNA against luciferase in cultured A549-Luc and MCF-7-Luc cells. Those mPHA-g-bPEI copolymers revealed a higher transfection efficiency and lower cytotoxicity than bPEI in two cell lines. Furthermore, a remarkable knockdown of luciferase expression of mPHA-g-bPEI (mAP2) complex (up to 85%) in vitro was found to be equivalent to that of commercially available transfection agent Lipofectamine™ 2000.


Subject(s)
Gene Transfer Techniques , Hydroxybutyrates/chemistry , Polyesters/chemistry , Polyethyleneimine/chemistry , Polymers/chemistry , RNA, Small Interfering/metabolism , Cell Line , Gene Silencing , Materials Testing , Molecular Structure , Particle Size , RNA, Small Interfering/chemistry
10.
Pest Manag Sci ; 67(5): 514-20, 2011 May.
Article in English | MEDLINE | ID: mdl-21472969

ABSTRACT

BACKGROUND: Extensive applications and frequent long-term use of pesticides can affect behavioural mechanisms and physiological and biochemical aspects of insects, leading to resistance. However, insect control strategies involving a different mode of action would be valuable for managing the emergence of insect resistance. In this context, the development of RNA interference technology has brought a turning point in the creation of new biopesticides. RESULTS: Full-length cDNA of Rieske iron-sulfur protein (RISP) was cloned and characterised from Plutella xylostella L. Three siRNAs specific to RISP sequences were designed and chemically synthesised, and fed to P. xylostella larvae by coating cabbage leaves. This resulted in specific gene silencing of RISP, and consequently brought significant mortality of P. xylostella larvae compared with the control treatment. Silencing of RISP leads to significantly lower transcript levels of RISP compared with the control. In addition, the amount of ATP in the surviving larvae was lower than in the control. However, surviving larvae gradually recovered to normal transcript and protein levels. CONCLUSION: This is the first demonstration of the potential use of chemically synthesised siRNA in the development of new biopesticides as a mitochondrial electron transport inhibitor.


Subject(s)
Electron Transport Complex III/genetics , Gene Silencing , Insect Proteins/genetics , Moths/genetics , Pest Control, Biological/methods , RNA, Small Interfering/genetics , Amino Acid Sequence , Animals , Electron Transport Complex III/metabolism , Insect Proteins/metabolism , Larva/genetics , Larva/growth & development , Larva/metabolism , Molecular Sequence Data , Moths/growth & development , Moths/metabolism , RNA, Small Interfering/chemical synthesis , RNA, Small Interfering/metabolism , Sequence Alignment
11.
Virus Res ; 136(1-2): 35-42, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18538433

ABSTRACT

The Tiger frog virus (TFV) belongs to the genus Ranavirus in the family Iridoviridae, and its genome was completely sequenced in 2002. In order to better understand the viral structure and functional genes involved in infection and virus-host interactions, two candidate genes, ORF001L and ORF020R, were selected for our study. ORF001L and ORF020R were analyzed by genomic comparison and by using the TMHMM software. Both genes were conserved in the genus Ranavirus, may encode putative membrane proteins, and were determined as late genes by temporal analysis. In order to identify whether these two proteins were structural proteins or not, ORF001L and ORF020R were cloned and expressed in the pET32a (+) vector. Antisera against the two proteins were prepared by immunization of mice with purified proteins. Western blot analysis suggested that both ORF001L and ORF020R were structural proteins. Indirect immunofluorescence assay (IFA) revealed that the subcellular location of the two proteins was confined to the cytoplasm, especially at the viral assembly site (AS). Immunogold electron microscopy (IEM) further localized these two proteins, showing that they were envelope proteins.


Subject(s)
Membrane Proteins/analysis , Ranavirus/chemistry , Viral Envelope Proteins/analysis , Viral Structural Proteins/genetics , Viral Structural Proteins/isolation & purification , Amino Acid Sequence , Animals , Antibodies, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Blotting, Western , Cell Line , Cloning, Molecular , Conserved Sequence , Cyprinidae , Cytoplasm/chemistry , Fluorescent Antibody Technique, Indirect , Gene Expression , Male , Membrane Proteins/genetics , Mice , Microscopy, Immunoelectron , Molecular Sequence Data , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sequence Alignment , Time Factors , Viral Envelope Proteins/genetics , Virion/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...