Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Hortic Res ; 11(6): uhae109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883333

ABSTRACT

The economically significant genus Prunus includes fruit and nut crops that have been domesticated for shared and specific agronomic traits; however, the genomic signals of convergent and divergent selection have not been elucidated. In this study, we aimed to detect genomic signatures of convergent and divergent selection by conducting comparative population genomic analyses of the apricot-peach-plum-mei (APPM) complex, utilizing a haplotype-resolved telomere-to-telomere (T2T) genome assembly and population resequencing data. The haplotype-resolved T2T reference genome for the plum cultivar was assembled through HiFi and Hi-C reads, resulting in two haplotypes 251.25 and 251.29 Mb in size, respectively. Comparative genomics reveals a chromosomal translocation of ~1.17 Mb in the apricot genomes compared with peach, plum, and mei. Notably, the translocation involves the D locus, significantly impacting titratable acidity (TA), pH, and sugar content. Population genetic analysis detected substantial gene flow between plum and apricot, with introgression regions enriched in post-embryonic development and pollen germination processes. Comparative population genetic analyses revealed convergent selection for stress tolerance, flower development, and fruit ripening, along with divergent selection shaping specific crop, such as somatic embryogenesis in plum, pollen germination in mei, and hormone regulation in peach. Notably, selective sweeps on chromosome 7 coincide with a chromosomal collinearity from the comparative genomics, impacting key fruit-softening genes such as PG, regulated by ERF and RMA1H1. Overall, this study provides insights into the genetic diversity, evolutionary history, and domestication of the APPM complex, offering valuable implications for genetic studies and breeding programs of Prunus crops.

2.
Plant Physiol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743633

ABSTRACT

The cultivated apple (Malus domestica Borkh.) is a cross-pollinated perennial fruit tree of great economic importance. Previous versions of apple reference genomes were unphased, fragmented, and lacked comprehensive insights into the highly heterozygous genome, which impeded genetic studies and breeding programs in apple. In this study, we assembled a haplotype-resolved telomere-to-telomere reference genome for the diploid apple cultivar Golden Delicious. Subsequently, we constructed a pangenome based on twelve assemblies from wild and cultivated apples to investigate different types of resistance gene analogs (RGAs). Our results revealed the dynamics of the gene gain and loss events during apple domestication. Compared with cultivated species, more gene families in wild species were significantly enriched in oxidative phosphorylation, pentose metabolic process, responses to salt, and abscisic acid biosynthesis process. Interestingly, our analyses demonstrated a higher prevalence of RGAs in cultivated apples than their wild relatives, partially attributed to segmental and tandem duplication events in certain RGAs classes. Other types of structural variations, mainly deletions and insertions, have affected the presence and absence of TIR-NB-ARC-LRR (TNL), NB-ARC-LRR (NL), and CC-NB-ARC-LRR (CNL) genes. Additionally, hybridization/introgression from wild species has also contributed to the expansion of resistance genes in domesticated apples. Our haplotype-resolved T2T genome and pangenome provide important resources for genetic studies of apples, emphasizing the need to study the evolutionary mechanisms of resistance genes in apple breeding programs.

3.
Mol Plant ; 17(6): 867-883, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38678365

ABSTRACT

Given the escalating impact of climate change on agriculture and food security, gaining insights into the evolutionary dynamics of climatic adaptation and uncovering climate-adapted variation can empower the breeding of climate-resilient crops to face future climate change. Alfalfa (Medicago sativa subsp. sativa), the queen of forages, shows remarkable adaptability across diverse global environments, making it an excellent model for investigating species responses to climate change. In this study, we performed population genomic analyses using genome resequencing data from 702 accessions of 24 Medicago species to unravel alfalfa's climatic adaptation and genetic susceptibility to future climate change. We found that interspecific genetic exchange has contributed to the gene pool of alfalfa, particularly enriching defense and stress-response genes. Intersubspecific introgression between M. sativa subsp. falcata (subsp. falcata) and alfalfa not only aids alfalfa's climatic adaptation but also introduces genetic burden. A total of 1671 genes were associated with climatic adaptation, and 5.7% of them were introgressions from subsp. falcata. By integrating climate-associated variants and climate data, we identified populations that are vulnerable to future climate change, particularly in higher latitudes of the Northern Hemisphere. These findings serve as a clarion call for targeted conservation initiatives and breeding efforts. We also identified pre-adaptive populations that demonstrate heightened resilience to climate fluctuations, illuminating a pathway for future breeding strategies. Collectively, this study enhances our understanding about the local adaptation mechanisms of alfalfa and facilitates the breeding of climate-resilient alfalfa cultivars, contributing to effective agricultural strategies for facing future climate change.


Subject(s)
Climate Change , Medicago sativa , Medicago sativa/genetics , Medicago sativa/physiology , Adaptation, Physiological/genetics , Genomics , Genome, Plant
4.
Hortic Res ; 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35184194

ABSTRACT

Organic acid content in fruit is an important determinant of peach organoleptic quality, which undergoes considerable variations during development and maturation. However, its molecular mechanism remains largely unclear. In this study, an integrative approach of genome-wide association studies and comparative transcriptome analysis were applied to identify candidate genes involved in organic acid accumulation in peach. A key gene PpTST1, encoding tonoplast sugar transporter, was identified and the genotype of PpTST1 with a single-base transversion (G1584T) in the third exon which leads to a single amino acid substitution (Q528H) was associated with low level of organic acid content in peach. Overexpression of PpTST1His resulted in reduced organic acid content along with increased sugar content both in peach and tomato fruits, suggesting its dual function in sugar accumulation and organic acid content reduction. Two V-type proton ATPases interact with PpTST1 in yeast two-hybridization assay. In addition, the G1584T transversion appeared and gradually accumulated during domestication and improvement, which indicated that PpTST1 was under selection. The identification and characterization of PpTST1 would facilitate the improvement of peach fruit quality.

5.
Plant Sci ; 316: 111151, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35151460

ABSTRACT

Flavonoids, particularly anthocyanin is the main pigment that determined the red color of peach flowers, and help the plant to attract pollinators, protect the reproductive organs of flower from photo-oxidative effects of light and various non-communicable diseases. Through weightage gene coexpression network analysis (WGCNA) we identified a network of 15 hub genes that co-expressed throughout peach flower development including 5 genes coded for the key enzymes (CHI, F3'H, DFR, LAR and UFGT) of flavonoid biosynthetic pathway and 1 gene Prupe.1G111700 identified as R2R3 family transcription factor MYB108. Over expression of PpMYB108 significantly increased anthocyanin biosynthesis in Tobacco flowers. Moreover, the expression correlation between PpMYB108 and PpDFR, suggests that PpMYB108 play the role of transcriptional activator for PpDFR. This was further supported by a 6 bp insertion of MYB biding site in the core promoter region of PpDFR in red flower. The positive interaction of PpMYB108 with PpDFR promoter from red flower was confirmed in yeast one hybrid assay. These findings may be helpful in peach breeding programs as well as in identifying anthocyanin related genes in other species.


Subject(s)
Prunus persica , Anthocyanins , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Gene Regulatory Networks , Pigmentation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Prunus persica/genetics , Prunus persica/metabolism
6.
Plant J ; 108(1): 281-295, 2021 10.
Article in English | MEDLINE | ID: mdl-34309935

ABSTRACT

Peach (Prunus persica L. Batsch) is an economically important fruit crop worldwide. Although a high-quality peach genome has previously been published, Sanger sequencing was used for its assembly, which generated short contigs. Here, we report a chromosome-level genome assembly and sequence analysis of Chinese Cling, an important founder cultivar for peach breeding programs worldwide. The assembled genome contained 247.33 Mb with a contig N50 of 4.13 Mb and a scaffold N50 of 29.68 Mb, representing 99.8% of the estimated genome. Comparisons between this genome and the recently published one (Lovell peach) uncovered 685 407 single nucleotide polymorphisms, 162 655 insertions and deletions, and 16 248 structural variants. Gene family analysis highlighted the contraction of the gene families involved in flavone, flavonol, flavonoid, and monoterpenoid biosynthesis. Subsequently, the volatile compounds of 256 peach varieties were quantitated in mature fruits in 2015 and 2016 to perform a genome-wide association analysis. A comparison with the identified domestication genomic regions allowed us to identify 25 quantitative trait loci, associated with seven volatile compounds, in the domestication region, which is consistent with the differences in volatile compounds between wild and cultivated peaches. Finally, a gene encoding terpene synthase, located within a previously reported quantitative trait loci region, was identified to be associated with linalool synthesis. Such findings highlight the importance of this new assembly for the analysis of evolutionary mechanisms and gene identification in peach species. Furthermore, this high-quality peach genome provides valuable information for future fruit improvement.


Subject(s)
Genome, Plant/genetics , Prunus persica/genetics , Quantitative Trait Loci/genetics , Domestication , Evolution, Molecular , Fruit/chemistry , Fruit/genetics , Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide/genetics , Prunus persica/chemistry , Volatile Organic Compounds/analysis
7.
Int J Mol Sci ; 21(2)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952315

ABSTRACT

Female sterility is a key factor restricting plant reproduction. Our previous studies have revealed that pomegranate female sterility mainly arose from the abnormality of ovule development. MicroRNAs (miRNAs) play important roles in ovule development. However, little is known about the roles of miRNAs in female sterility. In this study, a combined high-throughput sequencing approach was used to investigate the miRNAs and their targeted transcripts involved in female development. A total of 103 conserved and 58 novel miRNAs were identified. Comparative profiling indicated that the expression of 43 known miRNAs and 14 novel miRNAs were differentially expressed between functional male flowers (FMFs) and bisexual flowers (BFs), 30 known miRNAs and nine novel miRNAs showed significant differences among different stages of BFs, and 20 known miRNAs and 18 novel miRNAs exhibited remarkable expression differences among different stages of FMFs. Gene ontology (GO) analyses of 144 predicted targets of differentially expressed miRNAs indicated that the "reproduction process" and "floral whorl development" processes were significantly enriched. The miRNA-mRNA interaction analyses revealed six pairs of candidate miRNAs and their targets associated with female sterility. Interestingly, pg-miR166a-3p was accumulated, whereas its predicted targets (Gglean012177.1 and Gglean013966.1) were repressed in functional male flowers (FMFs), and the interaction between pg-miR166a-3p and its targets (Gglean012177.1 and Gglean013966.1) were confirmed by transient assay. A. thaliana transformed with 35S-pre-pg-miR166a-3p verified the role of pg-miR166a-3p in ovule development, which indicated pg-miR166a-3p's potential role in pomegranate female sterility. The results provide new insights into molecular mechanisms underlying the female sterility at the miRNA level.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , MicroRNAs/genetics , Plant Infertility/genetics , Pomegranate/genetics , RNA, Messenger/genetics , RNA, Plant/genetics , RNA, Small Untranslated/genetics , Cluster Analysis , Flowers/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Gene Ontology , Gene Regulatory Networks , Genes, Plant/genetics , Ovule/genetics , Reproduction/genetics
8.
Plant Physiol Biochem ; 139: 379-388, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30954020

ABSTRACT

The pomegranate, Punica granatum L., which has been cultivated since antiquity, is known to be a superfruit, possessing an array of functional anti-oxidants and various other health benefits. The hardness of pomegranate seeds is an important indicator of fruit quality, which in turn affects economic value and market demand. However, the molecular mechanism underlying pomegranate seed hardness remains to be fully understood. In this study, we found a positive correlation between seed hardness and lignin content in two pomegranate varieties: "Tunisia" and "Sanbai". Specifically, genes associated with lignin biosynthesis were differentially expressed in soft-seed and hard-seed pomegranate varieties. Among these differential genes, we cloned and characterized the NAC transcription factor PgSND1-like. Sequence alignment found a single base replacement at the 166-bp position of CDS in the PgSND1-like gene from "Tunisia" and "Sanbai". Both PgSND1-like (Sanbai) and PgSND1-like (Tunisia) proteins are localized in the cell nucleus and have a transcription activation domain in the C-terminus. Yeast two-hybrid analysis indicated that PgSND1-like protein interacts with itself to form a homodimer. Overexpression of PgSND1-like (Sanbai) in Arabidopsis showed a higher lignin content in inflorescence stem and mature seed compared with wild-type Arabidopsis. Accordingly, the expression levels of several lignin biosynthesis-associated genes were upregulated in stem cells and mature seeds of transgenic plants. However, PgSND1-like (Tunisia) transgenic Arabidopsis showed no phenotypic differences with wild-type Arabidopsis. Taken together, we suggest that PgSND1-like may regulate at least two different functions in two pomegranate varieties, promoting lignin biosynthesis and seed hardness of pomegranate.


Subject(s)
Fruit/metabolism , Lythraceae/metabolism , Seeds/metabolism , Transcription Factors/metabolism , Antioxidants/metabolism , Fruit/genetics , Lythraceae/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Seeds/genetics , Transcription Factors/genetics
9.
Plant Sci ; 277: 229-241, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30466589

ABSTRACT

NAC (NAM, ATAF1/2 and CUC2) transcription factors play critical roles in plant abiotic stress responses. However, knowledge regarding the functional roles of NACs in abiotic stress tolerance and its underlying mechanisms is relatively limited in Miscanthus. In this study, we functionally characterized a novel Miscanthus NAC gene MlNAC12 by ectopic expression in Arabidopsis. MlNAC12 was localized in the nucleus. It could specifically binds to the NAC recognition sequence (NACRS) and has a transactivation activity in the C-terminus. Overexpression of MlNAC12 in Arabidopsis conferred hypersensitivity to exogenous Abscisic acid (ABA) at seed germination and root elongation stages. In addition, MlNAC12 overexpression enhanced germination and root growth under salt (NaCl) stress. Furthermore, MlNAC12 overexpression lines exhibited significantly enhanced drought stress tolerance, which was evidenced by a higher survival rate and a lower water loss rate compared to the wild type (WT). Accordingly, the stomata aperture was remarkably reduced in MlNAC12 overexpression lines in comparison to the WT under drought stress. Furthermore, the accumulation of the reactive oxygen species (ROS) and malondialdehyde (MDA) under abiotic stresses was significantly decreased, accompanied by dramatically enhanced activities of several antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in the transgenic plants. Correspondingly, the expression of six stress-responsive genes was significantly up-regulated in MlNAC12 overexpression lines. Together, our results indicate that MlNAC12 is a positive regulator of drought and salt stress tolerance through activating ROS scavenging enzymes.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/physiology , Plant Proteins/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/physiology , Stress, Physiological/genetics , Stress, Physiological/physiology , Transcription Factors/genetics
10.
Plant Mol Biol ; 92(1-2): 25-38, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27333892

ABSTRACT

Large quantities of mucilage are synthesized in seed coat epidermis cells during seed coat differentiation. This process is an ideal model system for the study of plant cell wall biosynthesis and modifications. In this study, we show that mutation in Irregular Xylem 7 (IRX7) results in a defect in mucilage adherence due to reduced xylan biosynthesis. IRX7 was expressed in the seeds from 4 days post-anthesis (DPA) to 13 DPA, with the peak of expression at 13 DPA. The seed coat epidermis cells of irx7 displayed no aberrant morphology during differentiation, and these cells synthesized and deposited the same amount of mucilage as did wild type (WT) cells. However, the distribution of the water-soluble vs. adherent mucilage layers was significantly altered in irx7 compared to the WT. Both the amount of xylose and the extent of glycosyl linkages of xylan was dramatically decreased in irx7 water-soluble and adherent mucilage compared to the WT. The polymeric structure of water-soluble mucilage was altered in irx7, with a total loss of the higher molecular weight polymer components present in the WT. Correspondingly, whole-seed immunolabeling assays and dot-immunoassays of extracted mucilage indicated dramatic changes in rhamnogalacturonan I (RG I) and xylan epitopes in irx7 mucilage. Furthermore, the crystalline cellulose content was significantly reduced in irx7 mucilage. Taken together, these results indicate that xylan synthesized by IRX7 plays an essential role in maintaining the adhesive property of seed coat mucilage, and its structural role is potentially implemented through its interaction with cellulose.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Glucosyltransferases/metabolism , Seeds/metabolism , Cellulose/metabolism , Gene Expression Regulation, Plant , Pectins/metabolism
11.
BMC Plant Biol ; 16: 102, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27114083

ABSTRACT

BACKGROUND: Xylan is the most abundant un-cellulosic polysaccharides of plant cell walls. Much progress in xylan biosynthesis has been gained in the model plant species Arabidopsis. Two homologous pairs Irregular Xylem 9 (IRX9)/9L and IRX14/14L from glycosyltransferase (GT) family 43 have been proved to play crucial roles in xylan backbone biosynthesis. However, xylan biosynthesis in grass such as Miscanthus remains poorly understood. RESULTS: We characterized seven GT43 members in M. lutarioriparius, a promising bioenergy crop. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed that the expression of MlGT43 genes was ubiquitously detected in the tissues examined. In-situ hybridization demonstrated that MlGT43A-B and MlGT43F-G were specifically expressed in sclerenchyma, while MlGT43C-E were expressed in both sclerenchyma and parenchyma. All seven MlGT43 proteins were localized to Golgi apparatus. Overexpression of MlGT43A-E but not MlGT43F and MlGT43G in Arabidopsis irx9 fully or partially rescued the mutant defects, including morphological changes, collapsed xylem and increased xylan contents, whereas overexpression of MlGT43F and MlGT43G but not MlGT43A-E complemented the defects of irx14, indicating that MlGT43A-E are functional orthologues of IRX9, while MlGT43F and MlGT43G are functional orthologues of IRX14. However, overexpression of all seven MlGT43 genes could not rescue the mucilage defects of irx14 seeds. Furthermore, transient transactivation analyses of MlGT43A-E reporters demonstrated that MlGT43A and MlGT43B but not MlGT43C-E were differentially activated by MlSND1, MlMYB46 or MlVND7. CONCLUSION: The results demonstrated that all seven MlGT43s are functionally conserved in xylan biosynthesis during secondary cell wall formation but diversify in seed coat mucilage xylan biosynthesis. The results obtained provide deeper insight into xylan biosynthesis in grass, which lay the foundation for genetic modification of grass cell wall components and structure to better suit for next-generation biofuel production.


Subject(s)
Glycosyltransferases/metabolism , Plant Proteins/metabolism , Poaceae/metabolism , Xylans/biosynthesis , Amino Acid Sequence , Cell Wall/genetics , Cell Wall/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Genetic Variation , Glycosyltransferases/classification , Glycosyltransferases/genetics , Golgi Apparatus/metabolism , In Situ Hybridization , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Confocal , Microscopy, Electron, Transmission , Multigene Family , Mutation , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Plant Stems/genetics , Plant Stems/metabolism , Plant Stems/ultrastructure , Poaceae/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid
12.
Gene ; 586(1): 158-69, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27085481

ABSTRACT

NAC (NAM, ATAF1/2, and CUC2) transcription factors are known to play important roles in responses to abiotic stresses in plants. Currently, little information regarding the functional roles of NAC genes in stress tolerance is available in Miscanthus lutarioriparius, a promising bioenergy plant for cellulosic ethanol production. In this study, we carried out the functional characterization of MlNAC9 in abiotic stresses. MlNAC9 was shown to act as a nuclear localized transcription activator with the activation domain in its C-terminus. The overexpression of MlNAC9 in Arabidopsis conferred hypersensitivity to abscisic acid (ABA) at seed germination and root elongation stages. In addition, the overexpression of MlNAC9 led to increased seed germination rate and root growth under salt (NaCl) treatment. Meanwhile, the transgenic Arabidopsis overexpressing MlNAC9 showed enhanced tolerance to drought and cold stresses. The expression of stress-responsive marker genes was significantly increased in MlNAC9 overexpression lines compared to that of WT under ABA, drought, salt, and cold stresses. Correspondingly, the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were significantly increased and the malondialdehyde (MDA) content was lower accumulated in MlNAC9 overexpression lines under drought and salt treatments. These results indicated that the overexpression of MlNAC9 improved the tolerance to abiotic stresses via an ABA-dependent pathway, and the enhanced tolerance of transgenic plants was mainly attributed to the increased expression of stress-responsive genes and the enhanced scavenging capability of reactive oxygen species (ROS).


Subject(s)
Arabidopsis/physiology , Plant Proteins/metabolism , Plants, Genetically Modified/physiology , Poaceae/genetics , Transcription Factors/metabolism , Abscisic Acid/metabolism , Arabidopsis/chemistry , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Nucleus/chemistry , Cold Temperature , DNA-Binding Proteins/genetics , Droughts , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Poaceae/classification , Salt Tolerance , Transcription Factors/genetics , Transformation, Genetic
13.
J Exp Bot ; 67(5): 1243-57, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26834178

ABSTRACT

During differentiation, the Arabidopsis seed coat epidermal cells synthesize and secrete large quantities of pectinaceous mucilage into the apoplast, which is then released to encapsulate the seed upon imbibition. In this study, we showed that mutation in Irregular Xylem 14 (IRX14) led to a mucilage cohesiveness defect due to a reduced xylan content. Expression of IRX14 was detected specifically in the seed coat epidermal cells, reaching peak expression at 13 days post-anthesis (DPA) when the accumulation of mucilage polysaccharides has ceased. Sectioning of the irx14-1 seed coat revealed no visible structural change in mucilage secretory cell morphology. Although the total amount of mucilage was comparable with the wild type (WT), the partition between water-soluble and adherent layers was significantly altered in irx14-1, with redistribution from the adherent layer to the water-soluble layer. The monosaccharide composition analysis revealed that xylose content was significantly reduced in irx14-1 water-soluble and adherent mucilage compared with the WT. The macromolecular characteristics of the water-soluble mucilage were modified in irx14-1 with a loss of the larger polymeric components. In accordance, glycome profiling and dot immunoblotting of seed mucilage using antibodies specific for rhamnogalacturonan I (RG I) and xylan confirmed the ultra-structural alterations in the irx14-1 mucilage. Meanwhile, the crystalline cellulose content was reduced in the irx14-1 mucilage. These results demonstrated that IRX14 was required for the biosynthesis of seed mucilage xylan, which plays an essential role in maintaining mucilage architecture potentially through altering the crystallization and organization of cellulose.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Pentosyltransferases/metabolism , Plant Mucilage/metabolism , Seeds/anatomy & histology , Seeds/metabolism , Xylans/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cellulose/metabolism , Crystallization , Gene Expression Regulation, Plant , Immunoblotting , Macromolecular Substances/metabolism , Mutation/genetics , Pentosyltransferases/genetics , Solubility , Spectroscopy, Fourier Transform Infrared , Water , Xylose/metabolism
14.
Plant Cell Rep ; 34(6): 943-58, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25666276

ABSTRACT

KEY MESSAGE: MLNAC5 functions as a stress-responsive NAC transcription factor gene and enhances drought and cold stress tolerance in transgenic Arabidopsis via the ABA-dependent signaling pathway. NAC transcription factors (TFs) play crucial roles in plant responses to abiotic stress. Miscanthus lutarioriparius is one of Miscanthus species native to East Asia. It has attracted much attention as a bioenergy crop because of its superior biomass productivity as well as wide adaptability to different environments. However, the functions of stress-related NAC TFs remain to be elucidated in M. lutarioriparius. In this study, a detailed functional characterization of MlNAC5 was carried out. MlNAC5 was a member of ATAF subfamily and it showed the highest sequence identity to ATAF1. Subcellular localization of MlNAC5-YFP fusion protein in tobacco leaves indicated that MlNAC5 is a nuclear protein. Transactivation assay in yeast cells demonstrated that MlNAC5 functions as a transcription activator and its activation domain is located in the C-terminus. Overexpression of MlNAC5 in Arabidopsis had impacts on plant development including dwarfism, leaf senescence, leaf morphology, and late flowering under normal growth conditions. Furthermore, MlNAC5 overexpression lines in Arabidopsis exhibited hypersensitivity to abscisic acid (ABA) and NaCl. Moreover, overexpression of MlNAC5 in Arabidopsis significantly enhanced drought and cold tolerance by transcriptionally regulating some stress-responsive marker genes. Collectively, our results indicated that MlNAC5 functions as an important regulator during the process of plant development and responses to salinity, drought and cold stresses.


Subject(s)
Arabidopsis/physiology , Poaceae/genetics , Transcription Factors/genetics , Abscisic Acid/metabolism , Arabidopsis/genetics , Cell Nucleus/metabolism , Cold-Shock Response/genetics , Droughts , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Salinity , Stress, Physiological/genetics , Transcription Factors/metabolism
15.
Plant Cell Rep ; 33(12): 2077-92, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25224554

ABSTRACT

KEY MESSAGE: The 13 MlNAC genes could respond to various abiotic stresses, suggesting their crucial roles in stress response. Overexpression of MlNAC2 in Arabidopsis led to improved drought tolerance. NAC (NAM, ATAF1/2 and CUC2) proteins are plant-specific transcription factors that play crucial roles in plant development, growth and stress responses. In this study, 13 stress-responsive NAC genes were identified from Miscanthus lutarioriparius. Full-length cDNA sequences were obtained for 11 MlNAC genes, which were phylogenetically classified into six subfamilies. Sequence alignment revealed the highly conserved NAC domain in the N-terminus of these MlNACs, while the C-terminus was highly divergent. We performed quantitative real-time RT-PCR to examine the expression profiles of MlNAC genes in different tissues including root, rhizome, mature stem, young stem, leaf and sheath. The 13 MlNAC genes displayed distinct tissue-specific patterns in six tissues examined. To gain further insight into their roles in response to abiotic stresses, expressions of MlNAC genes were analyzed under different stresses and hormone treatments including salt, drought, cold, wounding, abscisic acid, Methyl jasmonate and salicylic acid. The 13 MlNAC genes could respond to at least five stress treatments, and over 100-fold variations in transcript levels of MlNAC1, MlNAC2, MlNAC4, and MlNAC12 were observed in salt, drought and MeJA treatments, which indicated that MlNACs play crucial roles in stress response. Crosstalk among various abiotic stress and hormone responses was also discussed based on the expression of MlNAC genes. Overexpression of MlNAC2 in Arabidopsis (Col-0) led to improved drought tolerance. The water loss rate was significantly lower, and the recovery rate after a 60-min dehydration stress treatment was significantly higher in the MlNAC2 overexpression lines than the control.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins/genetics , Poaceae/genetics , Transcription Factors/genetics , Abscisic Acid/pharmacology , Acetates/pharmacology , Amino Acid Motifs , Amino Acid Sequence , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/physiology , Cloning, Molecular , Conserved Sequence/genetics , Cyclopentanes/pharmacology , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , Dehydration , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Molecular Sequence Data , Organ Specificity/genetics , Oxylipins/pharmacology , Phylogeny , Plant Growth Regulators/pharmacology , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified , Poaceae/drug effects , Salicylic Acid/pharmacology , Sequence Alignment , Sequence Analysis, DNA , Stress, Physiological/genetics , Transcription Factors/chemistry , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...