Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(32): 21547-21553, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37545399

ABSTRACT

A high-transmission and large group delay terahertz triple-band electromagnetically induced transparency (EIT) effect is obtained in a metal-perovskite hybrid metasurface, which consists of a cross metal (CM), a pair of square metal frames (SMFs), and a pair of square split rings (SSRs). The results reveal that the transmission amplitudes of three transparent windows are 0.83, 0.9, and 0.89. The maximum values of group delays at three transparent windows are 7.64 ps, 4.07 ps, and 4.27 ps. The multipole scattering theory shows that the first and third transparent windows are created by the coupling between the electric dipole and toroidal dipole, and the second transparent window is created by the electric dipoles. The triple-band EIT effect can be dynamically controlled by adjusting the conductivity of perovskite while the modulation depths are 49.4%, 41%, and 31.5%. Moreover, the slow light effect can also be tunable by tuning the conductivity of perovskite while the modulation depths are 87.8%, 65.6%, and 68.4%. Our study puts forward a novel design concept for multi-band EIT effect and shows great prospects in the application of multi-band devices.

2.
Phys Chem Chem Phys ; 25(31): 21074-21081, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37526248

ABSTRACT

The multi-layer terahertz metasurfaces are designed to achieve polarization-insensitive electromagnetically induced transparency (EIT) effect and its sensing performance based on spoof localized surface plasmons (S-LSPs). The unit cell of the proposed metasurfaces is comprised of a metallic spiral (MS) structure, square metal frame (SMF) structure, and vanadium dioxide (VO2) layer. The EIT effect is realized by the bright-bright coupling between spoof electric localized surface plasmons (S-ELSPs) and electric dipole, which can be proved by the multipole scattering theory. The maximum value of transmission amplitude at the transparent window is 0.91, and the modulation depth can reach 51% by adjusting the conductivity of VO2. The theoretical results based on the two-particle model show excellent agreement with the simulated results. Moreover, the change of polarization angle has little effect on the EIT effect and the proposed metasurfaces show polarization-insensitive characteristics. The slow light effect of the proposed metasurfaces can also be dynamically controlled by tuning the conductivity of VO2. Due to the high Q value of the transparent window, the proposed metasurfaces exhibit excellent sensing performance, and the sensitivity is 0.172 THz RIU-1. Our study provides a method for the fabrication of EIT metasurfaces and has a broad application prospect in slow light devices, sensors, and modulators.

3.
Phys Chem Chem Phys ; 25(19): 13393-13398, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37158637

ABSTRACT

A tunable and three-dimensional dual-band metamaterial absorber based on electromagnetically induced transparency (EIT) is proposed. The unit cell of the metamaterial absorber consisted of a cut wire (CW), two split ring resonators (SRRs), a metal plate and a patterned vanadium dioxide (VO2) film. The two absorption peaks could be dynamically controlled by tuning the conductivity of VO2 with the maximum absorptions of 97.5% at 1.05 THz and 96.5% at 1.16 THz. The physical mechanism of the metamaterial absorber was explained by the electric field, magnetic field, power loss density and surface current distributions. In addition, the metamaterial absorber exhibited a wide polarization angle for y-polarization wave and x-polarization wave and showed good robustness against oblique incidence. Moreover, the metamaterial absorber exhibited a high fault tolerance with a variation in the geometric parameters. Our work provides a novel method for the fabrication of multi-band metamaterial absorbers and has promising applications in terahertz sensors, modulators and filters.

4.
Environ Sci Pollut Res Int ; 24(7): 6572-6580, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28078517

ABSTRACT

Semivolatile organic compounds (SVOCs) in surface microlayer (SML) and subsurface water (SSW) from Dianshan Lake were studied to investigate their occurrence, distributions, as well as enrichment and potential sources. A sample was concentrated by solid-phase micro-extraction (SPME). Identification and quantification were carried out by gas chromatography coupled to mass spectrometry (GC-MS). Total SVOCs concentrations ranged from 25.93 to 47.49 µg/L in SSW and 38.19 to 77.23 µg/L in SML. The phthalic acid esters (PAE) concentrations in both SSW and SML are the highest of the total SVOC. The enrichment factors (EFs) of total SVOCs ranged from 0.80 to 2.98, while the highest EF was found in benzyl phthalate and dibutyl phthalate, compounds of PAEs (4.06). The EFs values calculated in this study were consistent with the EFs reported for other water ecosystems. Compared with other place, the EF of PAHs were in the normal level (0.88-2.37). The results of correlation analysis, principal component analysis (PCA) suggested that at least three sources, i.e., agricultural residual pesticides, industrial sewage and miscellaneous sources, were responsible for the presence of SVOCs in Dianshan Lake examined, accounting for 94.16% of the total variance in the dataset. Environmental risk assessment revealed that a majority of SVOCs posed relatively low risks (the values of risk quotient were less than 0.1), while naphthalene, acenaphthene, 2,4-dinitrotoluene, and dibutyl phthalat exhibited moderate risks (values of risk quotient were more than 0.1 but less than 1fore) to aquatic organisms.


Subject(s)
Lakes/analysis , Pesticide Residues/analysis , Phthalic Acids/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Volatile Organic Compounds/analysis , Water Pollutants, Chemical/analysis , China , Ecosystem , Gas Chromatography-Mass Spectrometry , Sewage/analysis
5.
Environ Sci Pollut Res Int ; 21(8): 5730-6, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24442963

ABSTRACT

In this work, pigeon feathers, a kind of totally waste by-product from the poultry industry, were utilized to fabricate a highly porous keratin sponge in a very simple way by freeze-drying treatment of the dissolved keratin solution, and applied for the first time as an oil adsorbent. An improved method was proposed to dissolve the feather keratin using the inexpensive sodium disulfite as the reducing reagent for sulfitolysis reaction, with a much lower concentration of all involving reaction regents. Moreover, the regenerated keratin sponges obtained a high oil adsorption capacity of above 30 g/g for both liquid paraffin and soybean oil, as well as a good oil holding ability, suggesting that this keratin sponge might be a potential for use as oil adsorbent.


Subject(s)
Environmental Restoration and Remediation/methods , Feathers/chemistry , Keratins/chemistry , Paraffin/chemistry , Soybean Oil/chemistry , Adsorption , Animal Husbandry , Animals , Industrial Waste , Porifera , Porosity , Poultry , Recycling , Refuse Disposal
6.
Bioresour Technol ; 135: 464-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23186663

ABSTRACT

An ionic liquid [AMIM]Cl was used to pretreat wheat straw with an aim to remarkably improve enzymatic hydrolysis rate and yield of fermentable sugars. Some influence factors including dosage of straw, particle size of straw meal as well as pretreatment time and temperature were investigated. After optimization, the hydrolytic efficiency of regenerated straw increased obviously as compared to untreated materials, and the sugar yield of straw was 71.2% after pretreatment in [AMIM]Cl at 110 °C for 1.5 h with a 3 w/w% straw dosage, 3.6 times higher than that of untreated straw (19.6%). The reason behind the acceleration of enzymatic hydrolysis was discussed by the analysis of SEM, XRD and FTIR. The yield of bacterial cellulose obtained in straw hydrolysates was higher than that in glucose-based media. This may be due to the presence of other complex components in the hydrolysate that would enhance the formation of bacterial cellulose.


Subject(s)
Cellulose/metabolism , Gluconacetobacter/metabolism , Triticum/metabolism , Waste Products/analysis , Biotransformation/drug effects , Cellulase/metabolism , Crystallization , Gluconacetobacter/drug effects , Hydrolysis/drug effects , Ionic Liquids/pharmacology , Particle Size , Spectroscopy, Fourier Transform Infrared , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...