Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroimaging ; 23(2): 202-6, 2013 Apr.
Article in English | MEDLINE | ID: mdl-21914033

ABSTRACT

BACKGROUND AND PURPOSE: The combination of phase demodulation and field mapping is a practical method to correct echo planar imaging (EPI) geometric distortion. However, since phase dispersion accumulates in each phase-encoding step, the calculation complexity of phase modulation is Ny-fold higher than conventional image reconstructions. Thus, correcting EPI images via phase demodulation is generally a time-consuming task. METHODS: Parallel computing by employing general-purpose calculations on graphics processing units (GPU) can accelerate scientific computing if the algorithm is parallelized. This study proposes a method that incorporates the GPU-based technique into phase demodulation calculations to reduce computation time. The proposed parallel algorithm was applied to a PROPELLER-EPI diffusion tensor data set. RESULTS: The GPU-based phase demodulation method reduced the EPI distortion correctly, and accelerated the computation. The total reconstruction time of the 16-slice PROPELLER-EPI diffusion tensor images with matrix size of 128 × 128 was reduced from 1,754 seconds to 101 seconds by utilizing the parallelized 4-GPU program. CONCLUSIONS: GPU computing is a promising method to accelerate EPI geometric correction. The resulting reduction in computation time of phase demodulation should accelerate postprocessing for studies performed with EPI, and should effectuate the PROPELLER-EPI technique for clinical practice.


Subject(s)
Artifacts , Brain/anatomy & histology , Computer Graphics/instrumentation , Echo-Planar Imaging/instrumentation , Echo-Planar Imaging/methods , Image Enhancement/instrumentation , Image Enhancement/methods , Algorithms , Equipment Design , Equipment Failure Analysis , Humans , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...