Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 264: 115943, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38039793

ABSTRACT

PARP-1 is a crucial factor in repairing DNA single strand damage and maintaining genomic stability. However, the use of PARP-1 inhibitors is limited to combination with chemotherapy or radiotherapy, or as a single agent for indications carrying HRR defects. The ubiquitin-proteasome system processes the majority of cellular proteins and is the principal manner by which cells regulate protein homeostasis. Proteasome inhibitors can cooperate with PARP-1 inhibitors to inhibit DNA homologous recombination repair function. In this study, we designed and synthesized the first dual PARP-1 and proteasome inhibitor based on Olaparib and Ixazomib. Both compounds 42d and 42i exhibited excellent proliferation inhibition and dual-target synergistic effects on cells that were insensitive to PARP-1 inhibitors. Further mechanistic evaluations revealed that 42d and 42i could inhibit homologous recombination repair function by down-regulating the expression of BRCA1 and RAD51. Additionally, 42i induced more significant apoptosis and showed better inhibitory effect on cell proliferation in clonal formation experiments in breast cancer cells than 42d. In summary, our study presented a new class of dual PARP-1/proteasome inhibitors with significant synergistic effects for the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Proteasome Inhibitors/pharmacology , Breast Neoplasms/drug therapy , Proteasome Endopeptidase Complex , Cell Line, Tumor , DNA , Phthalazines/pharmacology , Phthalazines/therapeutic use
2.
Adv Mater ; 36(14): e2310010, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38117070

ABSTRACT

Gauge field is widely studied in natural and artificial materials. With an effective magnetic field for uncharged particles, many intriguing phenomena are observed in several systems like photonic Floquet topological insulator. However, previous researches about the gauge field mostly focus on limited dimensions such as the Dirac spinor in graphene materials. Here, an orbital gauge field based on photonic triangular lattices is first proposed and experimentally observed. Disclination defects with Frank angle Ω created on such lattices breaks the original lattice symmetry and generates purely geometric gauge field operating on orbital basis functions. Interestingly, it is found that bound states near zero energy with the orbital angular momentum (OAM) l = 2 are intensively confined at the disclination as gradually expanding Ω. Moreover, the introduction of a vector potential field breaks the time-reversal symmetry of the orbital gauge field, experimentally manifested by the chiral transmission of light on helical waveguides. The orbital gauge field further suggests fantastic applications of manipulating the vortex light in photonic integrated devices.

3.
Eur J Med Chem ; 258: 115628, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37437349

ABSTRACT

Fibroblast growth factor receptor 4 (FGFR4) has been proved to be an effective target for cancer therapy. Aberration in FGF19/FGFR4 signaling is oncogenic driving force in human hepatocellular carcinoma (HCC). FGFR4 gatekeeper mutations induced acquired resistance remains an unmet clinical challenge for HCC treatment. In this study, a series of 1H-indazole derivatives were designed and synthesized as new irreversible inhibitors of wild-type and gatekeeper mutant FGFR4. These new derivatives showed significant FGFR4 inhibitory and antitumor activities, among which compound 27i was demonstrated to be the most potent compound (FGFR4 IC50 = 2.4 nM). Remarkably, compound 27i exhibited no activity against a panel of 381 kinases at 1 µM. Additionally, compound 27i displayed nanomolar IC50s against huh7 (IC50 = 21 nM) and two mutant cell lines, BaF3/ETV6-FGFR4-V550L and BaF3/ETV6-FGFR4-N535K (IC50 = 2.5/171 nM). Meanwhile, compound 27i exhibited potent antitumor potency (TGI: 83.0%, 40 mg/kg, BID) in Huh7 xenograft mouse models with no obvious toxicity observed. Overall, compound 27i was identified as a promising preclinical candidate for overcoming FGFR4 gatekeeper mutations for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Receptor, Fibroblast Growth Factor, Type 4 , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Proliferation
4.
Bioorg Chem ; 132: 106356, 2023 03.
Article in English | MEDLINE | ID: mdl-36669357

ABSTRACT

The mammalian target of rapamycin (mTOR) has been proved to be an effective target for cancer therapy. Two kinds of mTOR inhibitors, the rapalogs and mTOR kinase inhibitors (TORKi), have been developed and clinically validated in several types of malignancies. Compared with rapalogs, TORKi can exert better antitumor activity by inhibiting both mTORC1 and mTORC2, but the clinical development of current TORKi candidates has been relative slow, more TORKi with novel scaffold need to be developed to expand the current pipelines. In this study, a series of 9-methyl-9H-purine and thieno[3, 2-d]pyrimidine derivatives were designed, synthesized and biological evaluation. Most of these compounds exhibited good mTOR kinase inhibitory activity and selectivity over PI3Kα. Subsequent antiproliferative assay allowed us to identify the lead compound 15i, which display nanomolar to low micromolar IC50s against six human cancer cell lines. 15i could induce cell cycle arrest of MCF-7, PC-3 and A549 cells at the G0/G1 phase and suppress the migration and invasion of these cancer cells by suppressing the phosphorylation of AKT and P70S6 kinase. It could also regulate autophagy-related proteins to induce autophagy. Therefore, 15i would be a starting point for the development of new TORKi as anticancer drug.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , MTOR Inhibitors , Protein Kinase Inhibitors , TOR Serine-Threonine Kinases/metabolism , Neoplasms/drug therapy , Purines/pharmacology , Pyrimidines , Cell Proliferation , Cell Line, Tumor , Drug Screening Assays, Antitumor , Structure-Activity Relationship
5.
Light Sci Appl ; 11(1): 243, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35915073

ABSTRACT

Topology have prevailed in a variety of branches of physics. And topological defects in cosmology are speculated akin to dislocation or disclination in solids or liquid crystals. With the development of classical and quantum simulation, such speculative topological defects are well-emulated in a variety of condensed matter systems. Especially, the underlying theoretical foundations can be extensively applied to realize novel optical applications. Here, with the aid of transformation optics, we experimentally demonstrated bound vortex light on optical chips by simulating gauge fields of topological linear defects in cosmology through position-dependent coupling coefficients in a deformed photonic graphene. Furthermore, these types of photonic lattices inspired by topological linear defects can simultaneously generate and transport optical vortices, and even can control the orbital angular momentum of photons on integrated optical chips.

6.
Adv Mater ; 34(28): e2110044, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35306698

ABSTRACT

Quantum coherence is the central element of particle states, and it characterizes the overall performance of various quantum materials. Bloch oscillation is a fundamental coherent behavior of particles under a static potential, which can be easily destroyed by Zener tunneling in multiband 2D lattice materials. The control of Zener tunneling therefore plays the key role in quantum engineering for complicated physical systems. Here, the inhibition and reconstruction of Zener tunneling in photonic honeycomb lattices are experimentally demonstrated.  Deformed honeycomb lattices are integrated and an effective static potential is realized on the 2D lattice materials. Zener tunneling disappears in stretch-type lattices and wave packets stay in the dispersionless upper energy band. On the contrary, Zener tunneling is greatly enhanced in compression-type lattices and wave packets exhibit directional oscillations without branches, which manifest the preserved coherence of the wave packets. The results demonstrate the protection of photonic coherence by structurally controlling the Zener tunneling, representing a step toward flexible quantum engineering for large-scale artificial quantum materials.

7.
Eur J Med Chem ; 227: 113922, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34700270

ABSTRACT

BRD4-targeted proteolysis targeting chimera (PROTAC) have exhibited promising in vitro and in vivo anticancer activity in a number of cancer models. However, the clinical development of current reported BRD4-PROTACs have stagnated, largely due to the safety risks caused by their poor degradation selectivity. In this study, we designed and synthesized a series of PROTACs based on our recently reported dual BET/PLK1 inhibitor WNY0824, which led to the discovery of an isoform-selective and potent BRD4-PROTAC 12a (WWL0245). WWL0245 exhibited excellent selective cytotoxicity in the BETi sensitive cancer cell lines, including AR-positive prostate cancer cell lines. It could also efficiently induce ubiquitin-proteasomal degradation of BRD4 in AR-positive prostate cancer cell lines, with sub-nanomolar half-maximal degrading concentration (DC50) and maximum degradation (Dmax) > 99%. Moreover, WWL0245 induced cell cycle arrest at the G0/G1 phase and apoptosis in AR-positive prostate cancer by downregulation of the protein levels of AR, PSA and c-Myc as well as transcriptionally suppressed AR-regulated genes. WWL0245 was thus expected to be developed as a promising drug candidate for AR-positive prostate cancer and a valuable tool compound to study the biological function of BRD4.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Prostatic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle Proteins/metabolism , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Male , Molecular Structure , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Proteins/metabolism , Proteolysis/drug effects , Proto-Oncogene Proteins/metabolism , Structure-Activity Relationship , Transcription Factors/metabolism , Polo-Like Kinase 1
9.
Biosci Biotechnol Biochem ; 84(7): 1521-1528, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32183612

ABSTRACT

Sterols are verified to be able to produce polycyclic aromatic hydrocarbons during its pyrolysis. In this study, a kind of Aspergillus fumigatus (LSD-1) was isolated from cigar leaves, and the biosorption effects on the stigmasterol, ß-sitosterol, campesterol, cholesterol, and ergosterol by using living and dead biomass of LSD-1 were investigated. The results showed that both living and dead biomass could efficiently remove these sterols in aqueous solution and tobacco waste extract (TWE). Interestingly, compared with the living biomass of LSD-1, the dead biomass of LSD-1 not only kept a high adsorption efficiency but also did not produce ergosterol. Overall, dead biomass of LSD-1 was a more suitable biosorbent to sterols in TWE. Furthermore, Brunner-Emmet-Teller (BET), Fourier transformed infrared spectrometer (FTIR) and scanning electron microscope (SEM) analysis were used to explore the biosorption process of living and dead biomass and their differences, suggesting that the biosorption of sterols was a physical process.


Subject(s)
Absorption, Physiological , Aspergillus fumigatus/metabolism , Cholesterol/analogs & derivatives , Ergosterol/metabolism , Nicotiana/chemistry , Nicotiana/microbiology , Phytosterols/metabolism , Plant Extracts/metabolism , Sitosterols/metabolism , Stigmasterol/metabolism , Biodegradation, Environmental , Biomass , Cholesterol/metabolism , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Plant Leaves/chemistry , Plant Leaves/microbiology , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/metabolism
10.
Mater Sci Eng C Mater Biol Appl ; 103: 109831, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31349481

ABSTRACT

Combination of both internal- and external-stimuli responsive strategies in nanoplatforms can maximize therapeutic outcomes by overcoming drug efflux-mediated resistance and prolonging sustained release of therapeutic payloads in controlled and sequential manner. Here, we show a light/redox dual-stimuli responsive ß-cyclodextrin (ß-CD)-gated mesoporous silica nanoparticles (MSN) that can effectively load and seal the chemotherapeutics, doxorubicin (DOX), inside MSN with a dual-capped system. The primary gatekeeper was achieved by capping ß-CD via a disulfide linkage. An azobenzene/galactose-grafted polymer (GAP) was introduced to functionalize the MSN surface through host-guest interaction. GAP not only served as a secondary non-covalent polymer-gatekeeper to further prevent molecules from leaking out, but also presented targeting ligand for engagement of the asialoglycoprotein receptor (ASGPR) on hepatocellular carcinoma (HepG2) cells. The controlled and stimuli release of DOX could be realized via dissociation of azobenzene moieties from ß-CD cage upon UV-irradiation, followed by liberation with the endogenous glutathione. The in vitro studies verified the redox-sensitive DOX release behavior, and the UV irradiation could accelerate this process to trigger DOX burst from MSN-ss-CD/GAP. Notably, the DOX@MSN-ss-CD/GAP could more efficiently deliver DOX into HepG2 cells and demonstrate enhanced cytotoxicity as compared with HeLa and COS7 cells. The smart MSN-ss-CD/GAP delivery system holds the potential for universal therapeutic uses in both biomedical research and clinical settings.


Subject(s)
Doxorubicin , Drug Carriers , Nanoparticles , Neoplasms/drug therapy , Silicon Dioxide , beta-Cyclodextrins , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Asialoglycoprotein Receptor/metabolism , COS Cells , Chlorocebus aethiops , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , HeLa Cells , Hep G2 Cells , Humans , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Porosity , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacokinetics , Silicon Dioxide/pharmacology , Ultraviolet Rays , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/pharmacokinetics , beta-Cyclodextrins/pharmacology
11.
PLoS Genet ; 5(4): e1000444, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19343200

ABSTRACT

Fragile X syndrome, a common form of inherited mental retardation, is caused by the loss of fragile X mental retardation protein (FMRP). We have previously demonstrated that dFmr1, the Drosophila ortholog of the fragile X mental retardation 1 gene, plays a role in the proper maintenance of germline stem cells in Drosophila ovary; however, the molecular mechanism behind this remains elusive. In this study, we used an immunoprecipitation assay to reveal that specific microRNAs (miRNAs), particularly the bantam miRNA (bantam), are physically associated with dFmrp in ovary. We show that, like dFmr1, bantam is not only required for repressing primordial germ cell differentiation, it also functions as an extrinsic factor for germline stem cell maintenance. Furthermore, we find that bantam genetically interacts with dFmr1 to regulate the fate of germline stem cells. Collectively, our results support the notion that the FMRP-mediated translation pathway functions through specific miRNAs to control stem cell regulation.


Subject(s)
Cell Differentiation , Drosophila Proteins/metabolism , Drosophila/metabolism , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/metabolism , Germ Cells/cytology , MicroRNAs/metabolism , Stem Cells/cytology , Animals , Drosophila/cytology , Drosophila/genetics , Drosophila Proteins/genetics , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Germ Cells/metabolism , Humans , MicroRNAs/genetics , Ovary/cytology , Ovary/metabolism , Protein Binding , Stem Cells/metabolism
12.
Dev Cell ; 14(4): 494-506, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18410727

ABSTRACT

Nuclear envelope proteins play important roles in chromatin organization, gene regulation, and signal transduction; however, the physiological role of these proteins remains elusive. We found that otefin (ote), which encodes a nuclear lamin-binding protein [corrected], is essential for germline stem cell (GSC) maintenance. We show that Ote, as an intrinsic factor, is both necessary and sufficient to regulate GSC fate. Furthermore, we demonstrate that ote is required for the Dpp/BMP signaling pathway to silence bam transcription. By structure-function analysis, we demonstrate that the nuclear membrane localization of Ote is essential for its role in GSC maintenance. Finally, we show that Ote physically interacts with Medea/Smad4 at the bam silencer element to regulate GSC fate. Thus, we demonstrate that specific nuclear membrane components mediate signal-dependent transcriptional effects to control stem cell behavior.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Germ Cells/physiology , Membrane Proteins/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Smad4 Protein/metabolism , Stem Cells/physiology , Animals , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Cells, Cultured , Drosophila Proteins/genetics , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Gene Silencing , Germ Cells/cytology , Membrane Proteins/genetics , Mutation , Nuclear Proteins/genetics , Ovary/cytology , Ovary/metabolism , RNA Interference , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Regulatory Sequences, Nucleic Acid , Signal Transduction/physiology , Smad4 Protein/genetics , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...