Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Affect Disord ; 359: 109-116, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38768823

ABSTRACT

BACKGROUND: Inter-hemispheric cooperation is a prominent feature of the human brain, and previous neuroimaging studies have revealed aberrant inter-hemispheric cooperation patterns in patients with major depressive disorder (MDD). Typically, inter-hemispheric cooperation is examined by calculating the functional connectivity (FC) between each voxel in one hemisphere and its anatomical (structurally homotopic) counterpart in the opposite hemisphere. However, bilateral hemispheres are actually asymmetric in anatomy. METHODS: In the present study, we utilized connectivity between functionally homotopic voxels (CFH) to investigate abnormal inter-hemispheric cooperation in 96 MDD patients compared to 173 age- and sex-matched healthy controls (HCs). In addition, we analyzed the spatial correlations between abnormal CFH and the density maps of 13 neurotransmitter receptors and transporters. RESULTS: The CFH values in bilateral orbital frontal gyri and bilateral postcentral gyri were abnormally decreased in patients with MDD. Furthermore, these CFH abnormalities were correlated with clinical symptoms. In addition, the abnormal CFH pattern in MDD patients was spatially correlated with the distribution pattern of 5-HT1AR. LIMITATIONS: drug effect; the cross-sectional research design precludes causal inferences; the neurotransmitter atlases selected were constructed from healthy individuals rather than MDD patients. CONCLUSION: These findings characterized the abnormal inter-hemispheric cooperation in MDD using a novel method and the underlying neurotransmitter mechanism, which promotes our understanding of the pathophysiology of depression.


Subject(s)
Depressive Disorder, Major , Magnetic Resonance Imaging , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/metabolism , Female , Male , Adult , Middle Aged , Brain/physiopathology , Brain/diagnostic imaging , Neurotransmitter Agents/metabolism , Cross-Sectional Studies , Case-Control Studies , Functional Laterality/physiology , Receptors, Neurotransmitter/metabolism , Receptor, Serotonin, 5-HT1A/metabolism
2.
Schizophr Bull ; 50(3): 545-556, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38253437

ABSTRACT

BACKGROUND AND HYPOTHESIS: There is a huge heterogeneity of magnetic resonance imaging findings in schizophrenia studies. Here, we hypothesized that brain regions identified by structural and functional imaging studies of schizophrenia could be reconciled in a common network. STUDY DESIGN: We systematically reviewed the case-control studies that estimated the brain morphology or resting-state local function for schizophrenia patients in the literature. Using the healthy human connectome (n = 652) and a validated technique "coordinate network mapping" to identify a common brain network affected in schizophrenia. Then, the specificity of this schizophrenia network was examined by independent data collected from 13 meta-analyses. The clinical relevance of this schizophrenia network was tested on independent data of medication, neuromodulation, and brain lesions. STUDY RESULTS: We identified 83 morphological and 60 functional studies comprising 7389 patients with schizophrenia and 7408 control subjects. The "coordinate network mapping" showed that the atrophy and dysfunction coordinates were functionally connected to a common network although they were spatially distant from each other. Taking all 143 studies together, we identified the schizophrenia network with hub regions in the bilateral anterior cingulate cortex, insula, temporal lobe, and subcortical structures. Based on independent data from 13 meta-analyses, we showed that these hub regions were specifically connected with regions of cortical thickness changes in schizophrenia. More importantly, this schizophrenia network was remarkably aligned with regions involving psychotic symptom remission. CONCLUSIONS: Neuroimaging abnormalities in cross-sectional schizophrenia studies converged into a common brain network that provided testable targets for developing precise therapies.


Subject(s)
Brain , Connectome , Schizophrenia , Humans , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , Schizophrenia/pathology
3.
J Psychiatry Neurosci ; 48(6): E452-E460, 2023.
Article in English | MEDLINE | ID: mdl-38123242

ABSTRACT

BACKGROUND: Interhemispheric cooperation is one of the most prominent functional architectures of the human brain. In patients with schizophrenia, interhemispheric cooperation deficits have been reported using increasingly powerful neurobehavioural and neuroimaging measures. However, these methods rely in part on the assumption of anatomic symmetry between hemispheres. In the present study, we explored interhemispheric cooperation deficits in schizophrenia using a newly developed index, connectivity between functionally homotopic voxels (CFH), which is unbiased by hemispheric asymmetry. METHODS: Patients with schizophrenia and age- and sexmatched healthy controls underwent multimodal MRI, and whole-brain CFH maps were constructed for comparison between groups. We examined the correlations of differing CFH values between the schizophrenia and control groups using various neurotransmitter receptor and transporter densities. RESULTS: We included 86 patients with schizophrenia and 86 matched controls in our analysis. Patients with schizophrenia showed significantly lower CFH values in the frontal lobes, left postcentral gyrus and right inferior temporal gyrus, and significantly greater CFH values in the right caudate nucleus than healthy controls. Moreover, the differing CFH values in patients with schizophrenia were significantly correlated with positive symptom score and illness duration. Functional connectivity within frontal lobes was significantly reduced at the voxel cluster level compared with healthy controls. Finally, the abnormal CFH map of patients with schizophrenia was spatially associated with the densities of the dopamine D1 and D2 receptors, fluorodopa, dopamine transporter, serotonin transporter and acetylcholine transporter. CONCLUSION: Regional abnormalities in interhemispheric cooperation may contribute to the clinical symptoms of schizophrenia. These CFH abnormalities may be associated with dysfunction in neurotransmitter systems strongly implicated in schizophrenia.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging/methods , Caudate Nucleus
4.
Exp Clin Endocrinol Diabetes ; 128(4): 210-215, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31039600

ABSTRACT

BACKGROUND: Self-monitoring of blood glucose (SMBG) systems are expected to be accurate and provide reliable results. The international standard ISO (International Organization for Standardization) 15197:2013 is widely accepted for the accuracy evaluation for SMBG systems. Accuracy evaluation was performed for 5 different SMBG systems in patients from multi-departments at the hospital. METHOD: A total of 120 patients from Changzhou Second People's Hospital (Changzhou, China) were randomized and enrolled in the study. Accuracy evaluation was performed for 5 different SMBG systems: Gold AQ (Sinocare), Freestyle Optium Xceed (Abbott), Contour TS (Bayer), OneTouch Ultra (J&J) and Accu-Chek Performa (Roche). For each system, comparison measurements were performed with YSI 2300 STAT PLUS Glucose and Lactate Analyzer and Roche Cobas 8000 Modular Analyzer. RESULTS: All 5 systems showed that 100% of results fall within consensus error grid Zones A and B. Compared with YSI 2300 or Roche Cobas 8000 Modular Analyzer, Gold AQ system showed the highest accuracy. The linearity analysis also showed that Gold AQ had the highest correlation coefficient. CONCLUSION: Compared with other SMBG systems, Gold AQ Glucose Monitoring System manufactured by Sinocare Inc. had the highest accuracy in measuring blood glucose level in patients from multi-departments at this hospital.


Subject(s)
Blood Glucose Self-Monitoring/instrumentation , Blood Glucose Self-Monitoring/standards , Blood Glucose/analysis , Diabetes Mellitus/blood , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...