Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
1.
Am J Drug Alcohol Abuse ; : 1-25, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847790

ABSTRACT

Background: Adolescent brains are highly vulnerable to heavy alcohol exposure. Increased understanding of how alcohol adversely impacts brain maturation may improve treatment outcomes.Objectives: This study characterizes short-term versus long-term effects of ethanol feeding on behavior, frontal lobe glial proteins, and mTOR signaling.Methods: Adolescent rats (8/group) were fed liquid diets containing 26% or 0% ethanol for 2 or 9 weeks, then subjected to novel object recognition (NOR) and open field (OF) tests. Frontal lobes were used for molecular assays.Results: Significant ethanol effects on OF performance occurred in the 2-week model (p < .0001). Further shifts in OF and NOR performance were unrelated to ethanol exposure in the 9-week models (p < .05 to p < .0001). Ethanol inhibited MAG1 (p < .01) and MBP (p < .0001) after 2 but not 9 weeks. However, both control and ethanol 9-week models had significantly reduced MAG1 (p < .001-0.0001), MBP (p < .0001), PDGFRA (p < .05-0.01), and PLP (p < .001-0.0001) relative to the 2-week models. GFAP was the only glial protein significantly inhibited by ethanol in both 2- (p < .01) and 9-week (p < .05) models. Concerning the mTOR pathway, ethanol reduced IRS-1 (p < .05) and globally inhibited mTOR (p < .01 or p < .001) in the 9- but not the 2-week model.Conclusions: Short-term versus long-term ethanol exposures differentially alter neurobehavioral function, glial protein expression, and signaling through IRS-1 and mTOR, which have known roles in myelination during adolescence. These findings suggest that strategies to prevent chronic alcohol-related brain pathology should consider the increased maturation-related vulnerability of adolescent brains.

2.
J Fluoresc ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753257

ABSTRACT

The accurate and sensitive detection of prostate specific antigen (PSA) is vital for the early diagnosis and treatment of prostate cancer. To this end, an unlabeled fluorescent aptasensor was constructed by using a novel Compound B {1,1'-(1,4-phenylene) bis(3-ethyl-1H-imidazol-3-ium) iodide} with aggregation-induced emission (AIE) activity as a fluorescence signal and NH2-Fe3O4 particle as an adsorption platform. Compound B could combine with prostate specific antigen aptamers (PSA-Apt) to form a PSA-Apt/B complex, which further generated the AIE effect. Then, PSA was added to the PSA-Apt/B solution. PSA combined with PSA-Apt/B to form the PSA-Apt/B/PSA complex. Next, NH2-Fe3O4 magnetic particles were added to the solution. Given that PSA-Apt/B/PSA would no longer combine with NH2-Fe3O4 magnetic particles, the PSA-Apt/B/PSA complex remained in the supernate after magnet separation, and the supernate showed strong fluorescence (I). When no PSA was added to the PSA-Apt/B solution, PSA-Apt/B could combine with NH2-Fe3O4 magnetic particles and would be sucked into the bottom of the test tube by magnet, and the supernate would show weak fluorescence (I0). Result showed that the difference between the above-mentioned two fluorescence values (∆I = I - I0) had an excellent linear relationship with the PSA concentration within the concentration range of 0.01-10 ng/mL, and its limit of detection was 3 pg/mL (S/N = 3). In addition, the sensor has high accuracy and can be directly used to test PSA in actual serum samples.

3.
J Gastrointest Surg ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782088

ABSTRACT

INTRODUCTION: The clinical outcomes between left-sided colon cancer and middle/low rectal cancer appear to be different. We aimed to examine the impact of primary tumor location regarding the left-sided colon and middle/low rectum on the overall survival (OS) of colorectal hepatic metastasectomy. PATIENTS AND METHODS: Patients who underwent colorectal hepatic metastasectomy were retrospectively enrolled. Patients were classified into two groups according to primary tumor location (left-sided colon and middle/low rectum). Categorical variables were compared using the chi-square test or Fisher's exact test, and continuous variables were analyzed using Student'st-test. Survival was analyzed by the KaplanMeier method and log-rank test. The prognostic factors were analyzed by univariate and multivariate analyses using Cox proportional hazards regression models. RESULTS: Totally, 365 patients were enrolled. Patients with left-sided colon cancer had significantly better OS than those with middle/low rectal cancer (hazard ratio (HR) 0.725, P=0.018), with a median OS of 48 months and 38 months, respectively. In the subgroup analysis of RAS mutations, those with left-sided colon cancer had significantly prolonged OS compared to those with middle/low rectum cancer (HR 0.608, P=0.034), with a median OS of 49 months and 26 months, respectively. This observation was limited to patients with RAS mutations. CONCLUSION: According to our findings, middle/low rectal cancer had poorer survival outcome, and should not be categorized together with left-sided colon cancer in terms of OS following colorectal hepatic metastasectomy.

4.
Front Immunol ; 15: 1343987, 2024.
Article in English | MEDLINE | ID: mdl-38690268

ABSTRACT

Autophagy is a cellular process that functions to maintain intracellular homeostasis via the degradation and recycling of defective organelles or damaged proteins. This dynamic mechanism participates in various biological processes, such as the regulation of cellular differentiation, proliferation, survival, and the modulation of inflammation and immune responses. Recent evidence has demonstrated the involvement of polymorphisms in autophagy-related genes in various skin autoimmune diseases. In addition, autophagy, along with autophagy-related proteins, also contributes to homeostasis maintenance and immune regulation in the skin, which is associated with skin autoimmune disorders. This review aims to provide an overview of the multifaceted role of autophagy in skin autoimmune diseases and shed light on the potential of autophagy-targeting therapeutic strategies in dermatology.


Subject(s)
Autoimmune Diseases , Autophagy , Skin Diseases , Humans , Autophagy/immunology , Autoimmune Diseases/immunology , Skin Diseases/immunology , Animals , Skin/immunology , Skin/pathology , Skin/metabolism , Homeostasis/immunology
5.
Appl Microbiol Biotechnol ; 108(1): 309, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661971

ABSTRACT

An alpha-proteobacterial strain JXJ CY 53 T was isolated from the cyanosphere of Microcystis sp. FACHB-905 (MF-905) collected from Lake Dianchi, China. JXJ CY 53 T was observed to be an aerobic, Gram-stain-negative, oval shaped, and mucus-secreting bacterium. It had C18:1ω7c and C16:0 as the major cellular fatty acids, Q-10 as the predominant ubiquinone, and sphingoglycolipid, diphosphatidylglycerol, phosphatidylcholine, and phosphatidylmethylethanolamine as the polar lipids. The G + C content of DNA was 65.85%. The bacterium had 16S rRNA gene sequence identities of 98.9% and 98.7% with Sphingomonas panni DSM 15761 T and Sphingomonas hankookensis KCTC 22579 T, respectively, while less than 97.4% identities with other members of the genus. Further taxonomic analysis indicated that JXJ CY 53 T represented a new member of Sphingomonas, and the species epithet was proposed as Sphingomonas lacusdianchii sp. nov. (type strain JXJ CY 53 T = KCTC 72813 T = CGMCC 1.17657 T). JXJ CY 53 T promoted the growth of MF-905 by providing bio-available phosphorus and nitrogen, plant hormones, vitamins, and carotenoids. It could modulate the relative abundances of nonculturable bacteria associated with MF-905 and influence the interactions of MF-905 and other bacteria isolated from the cyanobacterium, in addition to microcystin production characteristics. Meanwhile, MF-905 could provide JXJ CY 53 T dissolved organic carbon for growth, and control the growth of JXJ CY 53 T by secreting specific chemicals other than microcystins. Overall, these results suggest that the interactions between Microcystis and its attached bacteria are complex and dynamic, and may influence the growth characteristics of the cyanobacterium. This study provided new ideas to understand the interactions between Microcystis and its attached bacteria. KEY POINTS: • A novel bacterium (JXJCY 53 T) was isolated from the cyanosphere of Microcystis sp. FACHB-905 (MF-905) • JXJCY 53 T modulated the growth and microcystin production of MF-905 • MF-905 could control the attached bacteria by specific chemicals other than microcystins (MCs).


Subject(s)
Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sphingomonas , Sphingomonas/metabolism , Sphingomonas/genetics , Sphingomonas/isolation & purification , Sphingomonas/classification , RNA, Ribosomal, 16S/genetics , China , Fatty Acids/metabolism , DNA, Bacterial/genetics , Phospholipids/analysis , Microcystis/genetics , Microcystis/metabolism , Microcystis/growth & development , Lakes/microbiology , Sequence Analysis, DNA , Bacterial Typing Techniques , Symbiosis , Ubiquinone
6.
Front Microbiol ; 15: 1295696, 2024.
Article in English | MEDLINE | ID: mdl-38495512

ABSTRACT

Harmful algal blooms (HABs) in natural waters are of escalating global concern due to their detrimental impact on environmental health. Emerging evidence indicates that algae-bacteria symbionts can affect HAB features, though much about this interplay remains largely unexplored. The current study isolated a new species of Mucilaginibacter (type strain JXJ CY 39T) from culture biomass of the bloom-causing Microcystis aeruginosa FACHB-905 (Maf) from Lake Dianchi, China. Strain JXJ CY 39T was an aerobic, Gram-stain-negative rod bacterium that grew at 5-38°C, pH 4.0-11.0, and 0-3.0% NaCl. Taxonomic evaluation proposed a new species, with Mucilaginibacter lacusdianchii sp. nov., as the species epithet. Experimental results revealed that strain JXJ CY 39T spurred the growth of Maf by supplying soluble phosphorus and nitrogen during cultivation, despite the unavailability of soluble phosphorus and nitrogen. Additionally, by producing the plant hormone indole-3-acetate, strain JXJ CY 39T possibly impacted Maf's functionality. Results from co-culture experiments with other strains from Maf biomass showed possible effects of strain JXJ CY 39T on the relationship between Maf and other cohabiting bacteria, as well as microcystin toxin production characteristics. Although Maf could foster the growth of strain JXJ CY 39T by supplying organic carbon, the strain's growth could be regulated via specific chemical compounds based on antibiotic assays. Community composition analysis disclosed that this Mucilaginibacter strain positively affected Maf's growth and modified densities and types of bacteria linked to Maf. Overall, these results suggest that the interactions between important HAB-causing organisms and their attached bacteria are complex, dynamic, and may influence the growth characteristics of algae.

7.
J Invest Dermatol ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38493384

ABSTRACT

Vitiligo is a disfiguring depigmentation disorder characterized by loss of melanocytes. Although numerous studies have been conducted on the pathogenesis of vitiligo, the underlying mechanisms remain unclear. Although most studies have focused on melanocytes and keratinocytes, growing evidence suggests the involvement of dermal fibroblasts, residing deeper in the skin. This review aims to elucidate the role of fibroblasts in both the physiological regulation of skin pigmentation and their pathological contribution to depigmentation, with the goal of shedding light on the involvement of fibroblasts in vitiligo. The topics covered in this review include alterations in the secretome, premature senescence, autophagy dysfunction, abnormal extracellular matrix, autoimmunity, and metabolic changes.

8.
Adv Sci (Weinh) ; : e2310211, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38460166

ABSTRACT

The precise targeted delivery of therapeutic agents to deep regions of the brain is crucial for the effective treatment of various neurological diseases. However, achieving this goal is challenging due to the presence of the blood-brain barrier (BBB) and the complex anatomy of the brain. Here, a biomimetic self-propelled nanomotor with cascade targeting capacity is developed for the treatment of neurological inflammatory diseases. The self-propelled nanomotors are designed with biomimetic asymmetric structures with a mesoporous SiO2 head and multiple MnO2 tentacles. Macrophage membrane biomimetic modification endows nanomotors with inflammatory targeting and BBB penetration abilities The MnO2 agents catalyze the degradation of H2 O2 into O2 , not only by reducing brain inflammation but also by providing the driving force for deep brain penetration. Additionally, the mesoporous SiO2 head is loaded with curcumin, which actively regulates macrophage polarization from the M1 to the M2 phenotype. All in vitro cell, organoid model, and in vivo animal experiments confirmed the effectiveness of the biomimetic self-propelled nanomotors in precise targeting, deep brain penetration, anti-inflammatory, and nervous system function maintenance. Therefore, this study introduces a platform of biomimetic self-propelled nanomotors with inflammation targeting ability and active deep penetration for the treatment of neurological inflammation diseases.

9.
Aging (Albany NY) ; 16(5): 4250-4269, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38407978

ABSTRACT

Lei's formula (LSF), a traditional Chinese herbal remedy, is recognized for its remarkable clinical effectiveness in treating osteoarthritis (OA). Despite its therapeutic potential, the exact molecular mechanisms underlying LSF's action in OA have remained enigmatic. Existing research has shed light on the role of the mTOR signaling pathway in promoting chondrocyte senescence, a central factor in OA-related cartilage degeneration. Consequently, targeting mTOR to mitigate chondrocyte senescence presents a promising avenue for OA treatment. The primary objective of this study is to establish LSF's chondroprotective potential and confirm its anti-osteoarthritic efficacy through mTOR inhibition. In vivo assessments using an OA mouse model reveal substantial articular cartilage degeneration. However, LSF serves as an effective guardian of articular cartilage, evidenced by reduced subchondral osteosclerosis, increased cartilage thickness, improved surface smoothness, decreased OARSI scores, elevated expression of cartilage anabolic markers (Col2 and Aggrecan), reduced expression of catabolic markers (Adamts5 and MMP13), increased expression of the chondrocyte hypertrophy marker (Col10), and decreased expression of chondrocyte senescence markers (P16 and P21). In vitro findings demonstrate that LSF shields chondrocytes from H2O2-induced apoptosis, inhibits senescence, enhances chondrocyte differentiation, promotes the synthesis of type II collagen and proteoglycans, and reduces cartilage degradation. Mechanistically, LSF suppresses chondrocyte senescence through the mTOR axis, orchestrating the equilibrium between chondrocyte anabolism and catabolism, ultimately leading to reduced apoptosis and decelerated OA cartilage degradation. LSF holds significant promise as a therapeutic approach for OA treatment, offering new insights into potential treatments for this prevalent age-related condition.


Subject(s)
Cartilage, Articular , Osteoarthritis , Mice , Animals , Chondrocytes/metabolism , Hydrogen Peroxide/pharmacology , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , TOR Serine-Threonine Kinases/metabolism , Cartilage, Articular/metabolism
10.
Int J Biol Macromol ; 262(Pt 1): 129837, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302023

ABSTRACT

Starch/cellulose composite is one of the most promising systems since both matrix and reinforce agent have same chemical unite glucose, which results in an excellent compatibility. In this work, edible starch film was developed by compositing starch with diverse fibrillary celluloses (FCs) derived from okara, employing a confluence of chemical interactions and mechanical influences. Since diameter of the FCs can be easily controlled by processing methodologies, it is the first time to systematically investigate the effect of diameter of the FCs from macro to nano-scales on the performances of starch-based film. The fabricated macro- and nano-fibrillar celluloses and reinforced starch films were characterized by scanning electron microscope, optical microscopy, Fourier transform infrared spectroscopy, Rheometer and contact angle. Results showed that the FCs increased modulus (about 170 %) and tensile strength (about 180 %) significantly as expected since they are well-compatible and some chemical interactions. It was found that nano-fibrillary celluloses (CNFs) improve the toughness (about 20 %) of the starch film more efficiently, which improved the well-recognized weakness of starch-based materials. The nano-scale roughness on the surface of the starch film caused by different shrinkage ratios between starch and CNFs during drying reduced water sensitivity, which is another well-recognized weakness of starch film.


Subject(s)
Edible Films , Starch , Starch/chemistry , Permeability , Tensile Strength , Cellulose/chemistry
11.
J Hazard Mater ; 468: 133789, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38394893

ABSTRACT

Phages are among the most widely spread viruses, but their profiles and the antibiotic resistance genes (ARGs) they carry in swine wastewater remain underexplored. The present study investigated the distribution characteristics of phages and their ARG risk in anoxic/oxic (A/O) wastewater treatment processes of swine farms using short- and long-read metagenome and virome. The results demonstrated that the virome could extract more phage sequences than the total metagenome; thus, it was more suited for studying phages in wastewater settings. Intriguingly, phages had significantly lower abundance of ARG than ARGs harbored by total microorganisms (P < 0.01). Eleven ARGs co-occurred with phages and bacteria (R > 0.6 and P < 0.05), with Siphoviridae being the phage co-occurring with the most ARGs (5). Horizontal gene transfer (HGT) events were observed between Proteobacteria and the major phyla except for Bacteroidota. Furthermore, there were prophage sequences and ARGs on the same contig in bacterial MAGs. These data strongly demonstrate that phages promote horizontal transfer of ARG between bacterial hosts in A/O processes for swine wastewater treatment. Therefore, the risk of phage-mediated horizontal transfer of ARGs cannot be overlooked despite the low abundance of phage ARGs (pARG).


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Animals , Swine , Anti-Bacterial Agents/pharmacology , Metagenome , Wastewater , Bacteriophages/genetics , Virome , Drug Resistance, Microbial/genetics , Bacteria/genetics , Genes, Bacterial
12.
Mol Neurobiol ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363532

ABSTRACT

Rs3851179, a variant of PICALM gene, and age are the risk factors of Alzheimer's disease (AD). AD is divided into early-onset AD (EOAD, < 65 years) and late-onset AD (LOAD, ≥ 65 years) by age. The purpose was to investigate the impact of different genotypes of PICALM rs3851179 on brain atrophy and cognitive decline across the AD continuum in different age groups. Four hundred seven cognitive normal (CN) controls, 362 mild cognitive impairment (MCI) patients, and 94 AD patients were enrolled to assess the interaction between AD continuum, age status, and PICALM on gray matter volume (GMV), global cognition, memory function, and executive function using full factorial ANCOVA (3 × 2 × 2). The interaction between AD continuum and PICALM significantly affected the GMV of the left putamen (PUT.L). rs3851179 A-allele carriers did not show a significant decrease in PUT.L GMV from CN to MCI to AD, while GG-allele carriers did. The interaction between AD continuum and age status was significant on GMV of the left angular gyrus (ANG.L) and right superior occipital gyrus (SOG.R). LOAD had higher GMV of ANG.L and SOG.R than EOAD. The interactive effects among AD continuum, age status, and PICALM were not significant on GMV but were significant on global cognition and executive function. The A-allele was found to have a protective effect on global cognition and executive function in EOAD, but not significantly so in LOAD. PICALM rs3851179 A-allele might alleviate the atrophy of PUT.L across the AD continuum than GG-allele. Age status did not affect the interaction between AD continuum and PICALM on brain atrophy. The ANG.L and SOG.R atrophied more severely in EOAD than in LOAD. Rs3851179 A-allele was protective for global cognition and executive function in EOAD.

13.
BMC Anesthesiol ; 24(1): 13, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172775

ABSTRACT

BACKGROUND: The primary purpose of this study was to investigate the predictive value of alterations in cervical artery hemodynamic parameters induced by a simulated end-inspiratory occlusion test (sEIOT) measured by ultrasound for predicting postinduction hypotension (PIH) during general anesthesia. METHODS: Patients undergoing gastrointestinal tumor resection under general anesthesia were selected for this study. Ultrasound has been utilized to assess hemodynamic parameters in carotid artery blood flow before induction, specifically focusing on variations in corrected flow time (ΔFTc) and peak blood flow velocity (ΔCDPV), both before and after sEIOT. Anesthesia was induced by midazolam, sufentanil, propofol, and rocuronium, and blood pressure (BP) and heart rate (HR) were recorded within the first 10 min following endotracheal intubation. PIH was defined as fall in systolic blood pressure (SBP) or mean arterial pressure (MAP) by > 30% of baseline or MAP to < 60 mm Hg. RESULTS: The area under the receiver operating characteristic curves (AUC) for carotid artery ΔFTc was 0.88 (95%CI, 0.81 to 0.96; P < 0.001), and the optimal cutoff value was -16.57%, with a sensitivity of 91.4% and specificity of 77.60%. The gray zone for carotid artery ΔFTc was -16.34% to -15.36% and included 14% of the patients. The AUC for ΔCDPV was 0.54, with an optimal cutoff value of -1.47%. The sensitivity and specificity were calculated as 55.20% and 57.10%, respectively. CONCLUSION: The corrected blood flow time changes in the carotid artery induced by sEIOT can predict hypotension following general anesthesia-induced hypotension, wherein ΔFTc less than 16.57% is the threshold. TRIAL REGISTRATION: Chinese Clinical Trial Registry ( www.chictr.org.cn ; 20/06/2023; ChiCTR2300072632).


Subject(s)
Hypotension , Humans , Hypotension/diagnostic imaging , Hypotension/etiology , Hemodynamics , Blood Pressure/physiology , Anesthesia, General/adverse effects , Carotid Arteries
14.
Exp Dermatol ; 33(1): e14856, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37338012

ABSTRACT

Vitiligo is an acquired depigmentary disorder characterized by the depletion of melanocytes in the skin. Mitochondria shoulder multiple functions in cells, such as production of ATP, maintenance of redox balance, initiation of inflammation and regulation of cell death. Increasing evidence has implicated the involvement of mitochondria in the pathogenesis of vitiligo. Mitochondria alteration will cause the abnormalities of mitochondria functions mentioned above, ultimately leading to melanocyte loss through various cell death modes. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in mitochondrial homeostasis, and the downregulation of Nrf2 in vitiligo may correlate with mitochondria damage, making both mitochondria and Nrf2 promising targets in treatment of vitiligo. In this review, we aim to discuss the alterations of mitochondria and its role in the pathogenesis of vitiligo.


Subject(s)
Hypopigmentation , Vitiligo , Humans , Vitiligo/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Hypopigmentation/metabolism , Melanocytes/metabolism , Cell Death , Mitochondria/metabolism , Inflammation/metabolism
15.
J Antibiot (Tokyo) ; 77(3): 163-169, 2024 03.
Article in English | MEDLINE | ID: mdl-38148391

ABSTRACT

A novel actinobacterial strain, designated as JXJ CY 30 T, was isolated from the phycosphere of Microcystis aeruginosa FACHB-905 (Maf) collected from Lake Dianchi, China. The strain was a Gram-stain-positive, aerobic and coccus-shaped actinobacterium. It had alanine, glutamic acid, aspartic acid, and lysine in the peptidoglycan, and mannose, ribose and arabinose in its cell wall sugars, anteiso-C15:0 and iso-C15:0 as the main cellular fatty acids, MK-7 and MK-8 as the major respiratory quinones, and phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, glycolipid, and an unidentified phospholipid as the polar lipids. The DNA G + C content was 73.08%. Its 16 S rRNA gene sequence shared 99.14%, and 98.75% similarities with Micrococcus flavus DSM 19079 T and M. porci KD337-16T, respectively, and ≤98.41% similarities with other type strains of the genus Micrococcus. It formed independent clade with M. flavus DSM 19079 T on the phylogenetic trees. The digital DNA-DNA hybridization and average nucleotide identity values between strain JXJ CY 30 T and M. flavus DSM 19079 T and M. porci KD337-16T were 48.0% and 92.1%, 25.5% and 83.2%, respectively. These data above indicated that strain JXJ CY 30 T represented a new species of the genus Micrococcus, and the species epithet is proposed as Micrococcus lacusdianchii sp. nov. (type strain JXJ CY 30 T = KCTC 49378 T = CGMCC 1.17508 T). Strain JXJ CY 30 T can potentially provide Maf with various nutrients such as available phosphorus and nitrogen, plant hormones, various vitamins and carotenoids for growth, while it was inhibited by metabolites from its symbiotic algae Maf.


Subject(s)
Micrococcus , Phospholipids , Phylogeny , Micrococcus/genetics , Fatty Acids , DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques , Vitamin K 2
16.
J Am Chem Soc ; 146(1): 617-626, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38110416

ABSTRACT

The adsorptive separation of propylene and propane offers an energy-efficient alternative to the conventional cryogenic distillation technology. However, developing porous adsorbents with both high equilibrium and kinetic selectivity remains extremely challenging due to the similar size and physical properties of these gases. Herein, this work reports a ligand racemization strategy to construct quasi-discrete pores in MOFs for a synergistically enhanced thermodynamic and kinetic separation performance. The use of enantiopure l-malic acid versus racemic dl-malic acid as ligands afforded isoreticular Ni-based MOFs with contrasting one-dimensional channels (l-mal-MOF) and quasi-discrete cavities connected by small windows (dl-mal-MOF). The periodic pore constrictions in dl-mal-MOF significantly increased the differentiation in diffusion rates and binding energies between propylene and propane. dl-mal-MOF exhibited an exceptional propylene uptake of 1.82 mmol/g at 0.05 bar and 298 K along with an ultrahigh equilibrium-kinetic combined selectivity of 62.6. DFT calculations and MD simulations provided insights into the synergistic mechanism of preferential propylene adsorption and diffusion. Breakthrough column experiments demonstrated the excellent separation and high-purity recovery of propylene over propane on dl-mal-MOF. The robust stability and facile regeneration highlight its potential for propylene purification applications.

17.
Heliyon ; 9(12): e22534, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076074

ABSTRACT

The rapid development of society and industry as well as the frequent occurrence of oil spills cause the shortage of fresh water resources, which not only affects human safety and life, but also impedes the world-wide sustainable development. To address these challenges, novel membrane materials with unique wettability properties have gained significant attention, particularly in the field of oil/water separation. In this research, we modified the hydrophobic PET fabric to achieve superhydrophilic characteristics using impregnation method. Subsequently, we electrospun hydrophobic PVDF fibers onto the superhydrophilic fabric surface, and PVDF/Ca10(PO4)6(OH)2@PET Janus membrane with asymmetric wettability was obtained. The membrane has an excellent unidirectional liquid transport capacity, and can effectively separate heavy oil or light oil, the separation efficiency is more than 90 %. The results also show that the Janus membrane can be used under alkaline conditions and has satisfactory tensile resistance and re-use performance. This work provides a new idea for Janus membrane design and effectively improves the application potential of the Janus membrane in the field of oil/water separation.

18.
Quant Imaging Med Surg ; 13(12): 8478-8488, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38106248

ABSTRACT

Background: Diffusion-weighted imaging (DWI) is valuable in the screening, diagnosis, and grading of breast lesions. However, conventional DWI (C-DWI) is prone to chemical shift and distortion. ZOOMit DWI (Z-DWI), as an advanced magnetic resonance imaging (MRI) technique, applies two spatially selective parallel excitation pulses to focus sampling in the hope of obtaining more valuable information. This study aimed to evaluate and compare the image quality and feasibility of Z-DWI with those of C-DWI in breast lesions. Methods: The study included 51 patients with breast lesions who underwent breast MRI from May 2021 to February 2022. All patients received Z-DWI and C-DWI sequences, with b values selected as 50 and 800 s/mm2 (Z-DWIb50, Z-DWIb800, C-DWIb50, and C-DWIb800). Apparent diffusion coefficient (ADC) values based on Z-DWI and C-DWI were calculated. For qualitative analysis, four image quality parameters were selected and assessed on a 4-point Likert scale (1 = poor and 4 = excellent). For quantitative analysis, ADC, relative ADC (rADC), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and tumor-to-parenchymal contrast (TPC) values were selected for comparison. Results: Z-DWI had higher scores compared to C-DWI in terms of lesion conspicuity, anatomical details, distortion and artifacts, and overall image quality (P<0.05). Meanwhile, the agreement between the two readers was reasonably good [intraclass correlation coefficient (ICC) range, 0.360-0.881]. The SNR of Z-DWIb800 was better than that of C-DWIb800 (P<0.001). The Z-DWI ADC and rADC values of breast lesions were statistically significantly lower than those of C-DWI (mean ADC: P<0.001; rADC; P=0.005). Conclusions: Z-DWI sequences were shown to have superior image quality. The ADC map of Z-DWI is more conducive to the imaging evaluation of breast lesions.

19.
Microbiome ; 11(1): 235, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872584

ABSTRACT

BACKGROUND: Companion animals can contribute to the physical and mental health of people and often live in very close association with their owners. However, the antibiotic resistome carried by companion animals and the impact they have on their owners and living environment remain unclear. In this study, we compared the ARG profiles of cats, humans, and their living environments using metagenomic analysis to identify the core ARGs in the cat and human gut and explore the potential impact of cats on ARGs in the human gut through the environment. RESULTS: Results showed that the abundance of ARGs in the cat gut was significantly higher than that in the human gut (P < 0.0001), with aminoglycoside and tetracycline resistance genes being the dominant ARGs in the cat gut. There was no significant difference in the abundance of total ARGs in the guts of cat owners and non-owners (P > 0.05). However, the abundance of aminoglycoside resistance genes including APH(2'')-IIa and AAC(6')-Im was significantly higher in cat owners than that in non-cat owners (P < 0.001). Also, ARG abundance was positively correlated with the frequency of cat activity in the living environment. Enterobacteriaceae was the dominant ARG host co-occurring in the cat gut, human gut, and living environment. CONCLUSIONS: Our results show that cats may shape the living environment resistome and thus the composition of some ARGs in the human gut, highlighting the importance of companion animal environment health. Video Abstract.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Animals , Humans , Cats , Anti-Bacterial Agents/pharmacology , Genes, Bacterial/genetics , Aminoglycosides , Tetracycline , Enterobacteriaceae
20.
Int J Biol Macromol ; 253(Pt 5): 127186, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37802441

ABSTRACT

Excellent 3D printing materials must exhibit good extrudability and supportability, but these two characteristics are often contradictory. In this study, peach gum polysaccharide (PGP) was added to gelatin to prepare a 3D-printed functional gummy candy encapsulating curcumin. Rheology tests indicated that adding PGP could effectively improve the apparent viscosity and thermal stability and consequently improve the 3D printability and supportability of the products. When PGP addition was 6 %, the printing accuracy was higher than 90 %. Texture and microstructure analysis further revealed that PGP addition promoting a dense gel structure formed and the water holding capacity and supportability of gel materials were enhanced. Furthermore, the in vitro gastrointestinal digestion tests showed that after 6 h of simulated gastrointestinal fluid digestion, the retention rate of curcumin was nearly 80 %. The above results indicated that the composite gel of PGP and gelatin is a good 3D printing base material for nutrient delivery.


Subject(s)
Curcumin , Prunus persica , Gelatin/chemistry , Polysaccharides , Candy , Rheology , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...