Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 38(13): e23706, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38877842

ABSTRACT

The etiology of preeclampsia (PE), a complex and multifactorial condition, remains incompletely understood. DNA methylation, which is primarily regulated by three DNA methyltransferases (DNMTs), DNMT1, DNMT3A, and DNMT3B, plays a vital role in early embryonic development and trophectoderm differentiation. Yet, how DNMTs modulate trophoblast fusion and PE development remains unclear. In this study, we found that the DNMTs expression was downregulated during trophoblast cells fusion. Downregulation of DNMTs was observed during the reconstruction of the denuded syncytiotrophoblast (STB) layer of placental explants. Additionally, overexpression of DNMTs inhibited trophoblast fusion. Conversely, treatment with the DNA methylation inhibitor 5-aza-CdR decreased the expression of DNMTs and promoted trophoblast fusion. A combined analysis of DNA methylation data and gene transcriptome data obtained from the primary cytotrophoblasts (CTBs) fusion process identified 104 potential methylation-regulated differentially expressed genes (MeDEGs) with upregulated expression due to DNA demethylation, including CD59, TNFAIP3, SDC1, and CDK6. The transcription regulation region (TRR) of TNFAIP3 showed a hypomethylation with induction of 5-aza-CdR, which facilitated CREB recruitment and thereby participated in regulating trophoblast fusion. More importantly, clinical correlation analysis of PE showed that the abnormal increase in DNMTs may be involved in the development of PE. This study identified placental DNA methylation-regulated genes that may contribute to PE, offering a novel perspective on the role of epigenetics in trophoblast fusion and its implication in PE development.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , Pre-Eclampsia , Trophoblasts , Trophoblasts/metabolism , Female , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pregnancy , Humans , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Cell Fusion , Placenta/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics
2.
Bioorg Chem ; 143: 107074, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176378

ABSTRACT

Isosteviol is a tetracyclic diterpenoid obtained by hydrolysis of stevioside. Due to its unique molecular skeleton and extensive pharmacological activities, isosteviol has attracted more and more attention from researchers. This review summarized the structural modification, pharmacological activity and microbial transformation of isosteviol from 04/2008 to 10/2023. In addition, the research history, structural characterization, and pharmacokinetics of isosteviol were also briefly reviewed. This review aims to provide useful literature resources and inspirations for the exploration of diterpenoid drugs.


Subject(s)
Diterpenes, Kaurane , Diterpenes , Diterpenes/pharmacology , Diterpenes/chemistry
3.
J Ovarian Res ; 12(1): 90, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31554511

ABSTRACT

Phospholipase C (PLC) can participate in cell proliferation, differentiation and aging. However, whether it has a function in apoptosis in porcine primary granulosa cells is largely uncertain. The objective of this study was to examine the effects of PLC on apoptosis of porcine primary granulosa cells cultured in vitro. The mRNA expression of BAK, BAX and CASP3, were upregulated in the cells treated with U73122 (the PLC inhibitor). The abundance of BCL2 mRNA, was upregulated, while BAX and CASP3 mRNA expression was decreased after treatment with m-3M3FBS (the PLC activator). Both the early and late apoptosis rate were maximized with 0.5 µM U73122 for 4 h. The rate of early apoptosis was the highest at 4 h and the rate of late apoptosis was the highest at 12 h in the m-3M3FBS group. The protein abundance of PLCß1, protein kinase C ß (PKCß), calmodulin-dependent protein kinaseII α (CAMKIIα) and calcineurinA (CalnA) were decreased by U73122, and CAMKIIα protein abundance was increased by m-3M3FBS. The mRNA expression of several downstream genes (CDC42, NFATc1, and NFκB) was upregulated by PLC. Our results demonstrated that apoptosis can be inhibited by altering PLC signaling in porcine primary granulosa cells cultured in vitro, and several calcium-sensitive targets and several downstream genes might take part in the processes.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Granulosa Cells/metabolism , Type C Phospholipases/genetics , Animals , Apoptosis/genetics , Calcineurin/genetics , Calcium/metabolism , Caspase 3/genetics , Cell Proliferation/genetics , Estrenes/pharmacology , Female , Gene Expression Regulation/drug effects , Granulosa Cells/drug effects , Granulosa Cells/pathology , Phospholipase C beta/genetics , Phosphoprotein Phosphatases/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Pyrrolidinones/pharmacology , Signal Transduction/drug effects , Sulfonamides/pharmacology , Swine , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/genetics
4.
Reprod Domest Anim ; 54(9): 1236-1243, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31319005

ABSTRACT

Granulosa cells play important roles in the regulation of ovarian functions. Phospholipase C is crucial in several signalling pathways and could participate in the molecular mechanisms of cell proliferation, differentiation and ageing. The objective of this study was to identify the effects of phospholipase C on the steroidogenesis of oestradiol and progesterone in porcine granulosa cells cultured in vitro. Inhibitor U73122 or activator m-3M3FBS of phospholipase C was added to the in vitro medium of porcine granulosa cells, respectively. The secretion of oestradiol decreased after 2 hr, 8 hr, 12 hr, 24 hr and 48 hr of treatment with 500 nM U73122 (p < .05) and decreased after 2 hr of treatment in the 500 nM m-3M3FBS addition group (p < .05). The secretion of progesterone increased after 4 hr of treatment with 500 nM U73122 (p < .05) and increased after 2 hr and 8 hr of treatment in the 500 nM m-3M3FBS addition group (p < .05). The ratio of oestradiol to progesterone decreased at each time point, except 8 hr after the addition of 500 nM U73122 (p < .05). The ratio of oestradiol to progesterone decreased after 2 hr (p < .05) of treatment with 500 nM m-3M3FBS. In genes that regulate the synthesis of oestradiol or progesterone, the mRNA expression of CYP11A1 was markedly increased (p < .05), and the mRNA expression of other genes did not change significantly in the U73122 treatment group, while the addition of m-3M3FBS did not change those genes significantly despite the contrary trend. Our results demonstrated that phospholipase C can be a potential target to stimulate the secretion of oestradiol and suppress progesterone secretion in porcine granulosa cells cultured in vitro, which shed light on a novel biological function of phospholipase C in porcine granulosa cells.


Subject(s)
Estradiol/metabolism , Granulosa Cells/drug effects , Progesterone/metabolism , Type C Phospholipases/drug effects , Animals , Cells, Cultured , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Estrenes/pharmacology , Female , Gene Expression , Granulosa Cells/enzymology , Granulosa Cells/metabolism , Phosphodiesterase Inhibitors , Pyrrolidinones/pharmacology , Sulfonamides/pharmacology , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...