Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 479, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37807039

ABSTRACT

BACKGROUND: Rapeseed (Brassica napus L.) is the third largest source of vegetable oil in the world, and Sclerotinia sclerotiorum (Lib.) is a major soil-borne fungal plant pathogen that infects more than 400 plant species, including B. napus. Sclerotinia stem rot caused an annual loss of 10 - 20% in rapeseed yield. Exploring the molecular mechanisms in response to S. sclerotiorum infection in B. napus is beneficial for breeding and cultivation of resistant varieties. To gain a better understanding of the mechanisms regarding B. napus tolerance to Sclerotinia stem rot, we employed a miRNAome sequencing approach and comprehensively investigated global miRNA expression profile among five relatively resistant lines and five susceptible lines of oilseed at 0, 24, and 48 h post-inoculation. RESULTS: In this study, a total of 40 known and 1105 novel miRNAs were differentially expressed after S. sclerotiorum infection, including miR156, miR6028, miR394, miR390, miR395, miR166, miR171, miR167, miR164, and miR172. Furthermore, 8,523 genes were predicted as targets for these differentially expressed miRNAs. These target genes were mainly associated with disease resistance (R) genes, signal transduction, transcription factors, and hormones. Constitutively expressing miR156b (OX156b) plants strengthened Arabidopsis resistance against S. sclerotiorum accompanied by smaller necrotic lesions, whereas blocking miR156 expression in Arabidopsis (MIM156) led to greater susceptibility to S. sclerotiorum disease, associated with extensive cell death of necrotic lesions. CONCLUSIONS: This study reveals the distinct difference in miRNA profiling between the relatively resistant lines and susceptible lines of B. napus in response to S. sclerotiorum. The identified differentially expressed miRNAs related to sclerotinia stem rot resistance are involved in regulating resistance to S. sclerotiorum in rapeseed by targeting genes related to R genes, signal transduction, transcription factors, and hormones. miR156 positively modulates the resistance to S. sclerotiorum infection by restricting colonization of S. sclerotiorum mycelia. This study provides a broad view of miRNA expression changes after S. sclerotiorum infection in oilseed and is the first to elucidate the function and mechanism underlying the miR156 response to S. sclerotiorum infection in oilseed rape.


Subject(s)
Arabidopsis , Ascomycota , Brassica napus , Brassica rapa , MicroRNAs , Brassica napus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Arabidopsis/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Breeding , Brassica rapa/genetics , Ascomycota/physiology , Hormones/metabolism , Transcription Factors/metabolism
2.
Materials (Basel) ; 11(10)2018 Oct 16.
Article in English | MEDLINE | ID: mdl-30332825

ABSTRACT

Warp-knitted meshes have been widely used for structural reinforcement of rigid, semi-rigid, and flexible composite materials. In order to meet the performance requirements of different engineering applications, four typical warp-knitted meshes (rectangular, square, circular, and diamond) were designed and developed. The mechanical behaviors of these meshes under mono-axial and multi-axial tensile loads were compared. The influence of the initial notch length and orientation on the mechanical performance was also analyzed. The results showed that the biaxial tensile behavior of warp-knitted meshes tended to be more isotropic. The anisotropy level of the diamond warp-knitted mesh was the lowest (λ = 0.099), while the rectangular one was the highest (λ = 0.502). The notch on a significantly anisotropic mesh was propagated along the direction of larger modulus, while for a not remarkably anisotropic mesh, notch propagation was probably consistent with the initial notch orientation. The breaking strength of warp-knitted meshes with the same initial notch orientation decreased with the increase in notch length in both the wale and course directions. For warp-knitted meshes with the same initial notch length, the breaking strength in the wale direction was kept stable at different notch orientations, while that in the course direction decreased remarkably with notch orientation from 0° to 90°.

SELECTION OF CITATIONS
SEARCH DETAIL
...