Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 12(1): 15706, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36127502

ABSTRACT

Beauveria bassiana and Metarhizium anisopliae are two of the most important and widely used entomopathogenic fungi (EPFs) to control insect pests. Recent studies have revealed their function in promoting plant growth after artificial inoculation. To better assess fungal colonization and growth-promoting effects of B. bassiana and M. anisopliae on crops, maize Zea mays seedlings were treated separately with 13 B. bassiana and 73 M. anisopliae as rhizosphere fungi in a hydroponic cultural system. Plant growth indexes, including plant height, root length, fresh weight, etc., were traced recorded for 35 days to prove the growth promoting efficiency of the EPFs inoculation. Fungal recovery rate (FRR) verified that both B. bassiana and M. anisopliae could endophytically colonize in maize tissues. The recovery rates of B. bassiana in stems and leaves were 100% on the 7th day, but dropped to 11.1% in the stems and 22.2% in the leaves on the 28th day. Meanwhile, B. bassiana was not detected in the roots until the 28th day, reaching a recovery rate of 33.3%. M. anisopliae strains were isolated from the plant roots, stems and leaves throughout the tracing period with high recovery rates. The systematical colonization of B. bassiana and M. anisopliae in different tissues were further corroborated by PCR amplification of fungus-specified DNA band, which showed a higher detection sensitivity of 100% positive reaction. Fungal density comparing to the initial value in the hydroponic solution, dropped to be well below 1% on the 21st day. Thus, the two selected entomopathogenic fungal strains successfully established endophytic colonization rather than rhizospheric colonization in maize, and significantly promoted its growth in a hydroponic cultural system. Entomopathogenic fungi have great application potential in eco-agricultural fields including biopesticides and biofertilizers.


Subject(s)
Beauveria , Metarhizium , Biological Control Agents , DNA , Pest Control, Biological , Zea mays
3.
RSC Adv ; 10(58): 35480-35489, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-35515683

ABSTRACT

Magnesium-based materials are promising lightweight structural materials due to their excellent properties. However, their extensive application has been severely limited due to their high corrosion susceptibility. The inadequate corrosion resistance of Mg is mainly attributed to the porous and unprotective native surface film formed on Mg in aggressive environments. Here, we demonstrated a new environment-friendly route for the growth of a continuous nesquehonite (MgCO3·3H2O) protective film on the surface of pure Mg metal at a relatively low temperature via an in situ reaction of the Mg surface with gaseous phase CO2 in humid environments. The protective film consists solely of highly crystalline MgCO3·3H2O that is compact and has an umbrella-like structure. Electrochemical tests showed that compared to the untreated Mg substrate, the protective film can effectively improve the corrosion resistance of the substrate by nearly two orders of magnitude. Additionally, a possible formation mechanism of the nesquehonite film on the pure Mg was proposed and the effect of the carbonation time on the film was investigated. This environmentally-friendly surface treatment method is promising for use in the protection of magnesium-based materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...