Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 650(Pt B): 1022-1031, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37459726

ABSTRACT

The kinetic competition between water oxidation/electron extraction processes and recombination behaviors is a key consideration in the development of efficient photoanodes for solar-driven water splitting. Investigating the photogenerated charge behaviors could guide the construction of high-efficiency photoanodes. In this study, the charge carrier kinetics involved in photoelectrochemical water oxidation of PDS/Ti-Fe2O3 were analyzed using surface photovoltage (SPV), transient photovoltage (TPV), short-pulse transient photocurrent (TPC) and photoelectrochemical impedance spectra (PEIS). The TPC results indicate the interfacial electric field introduced by the PDS loading increases the electron extraction and suppresses the bulk recombination, enhancing the spatial separation of photogenerated charges, which is consistent with the SPV and TPV results. Besides, the surface recombination of the back electron (BER) is also attenuated, which enhances the long-lived holes at the surface of PDS/Ti-Fe2O3 photoanode. Similarly, as obtained by PEIS fitting, the loading of PDS accelerates holes transfer at the photoanode/electrolyte interface, and increases the utilization of long-lived holes. In other word, the recombination behaviors of photogenerated charges are restrained both in the bulk and surface of the photoanode after the deposition of PDS, leading to enhanced PEC performance. These findings highlight the importance of understanding charge carrier dynamics in the design of high-efficient photoanodes.

2.
Materials (Basel) ; 15(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499994

ABSTRACT

The microstructure and performance of magnesium potassium phosphate cement (MKPC), a kind of magnesium phosphate cement (MPC), are determined by the hydration products. In this paper, the hydration behavior of MKPC is investigated through various material characterization methods and thermodynamic modeling, including X-ray diffraction (XRD), thermogravimetric and differential scanning calorimeter (TG/DSC), scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and GEMS software. The results of XRD, TG/DSC and SEM all indicate that K-struvite (MgKPO4·6H2O) is the main hydration product of MKPC. When the curing age is 1 day and 28 days, the TG data indicate that the mass loss of MKPC in the range of 60-200 °C is 17.76% and 17.82%, respectively. The MIP results show that the porosity of MKPC is 29.63% and 29.61% at the curing age of 1 day and 28 days, respectively, which indicates that the structure of MKPC becomes denser with the increase in curing age. In addition, the cumulative pore volume of MKPC at the curing age of 28 days is 2.8% lower than that at 1 day, and the pore diameters are shifted toward the small pores. Furthermore, the thermodynamic modeling is well suited to make an analysis of the hydration behavior of MKPC.

3.
Langmuir ; 38(50): 15817-15826, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36490371

ABSTRACT

The effectiveness of photocatalytic and Fenton reactions in the synergistic treatment of water pollution problems has become indisputable. In this paper, nitrogen-doped TiO2 was selected as the catalyst for the photocatalytic reaction and manganese-substituted phosphomolybdic acid was used as the Fenton reagent, the two of which were combined together by acid impregnation to construct a binary photocatalysis-Fenton composite catalyst. The degradation experiments of the composite catalyst on RhB indicated that under UV-vis irradiation, the composite catalyst could degrade RhB almost completely within 8 min, and the degradation rate was 19.7 times higher than that of N-TiO2, exhibiting a superior degradation ability. Simultaneously, a series of characterization methods were employed to analyze the structure, morphology, and optical properties of the catalysts. The results demonstrated that the nitrogen doping not only expanded the photo response range of TiO2 but reduced the work function of TiO2, which facilitated the transfer of electrons to the loaded Mn-HPMo side and further promoted the electron-hole separation efficiency. In addition, the introduction of Mn-HPMo provided three pathways for the activation of hydrogen peroxide, which enhanced the degradation activity. This study provides novel insights into the construction of binary and efficient catalysts with multiple hydroxyl radical generation pathways.


Subject(s)
Manganese , Nitrogen , Nitrogen/chemistry , Catalysis
4.
Virol J ; 19(1): 60, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361243

ABSTRACT

BACKGROUND: Promoters are important factors affecting gene expression in cells. The driven activities of viral promoters were generally assessed to screen available promoters for transgenic and research and biotech industries. In this study, we cloned a full-length promoter from a Chinese isolate of strawberry vein banding virus (SVBV) and produced several deletion mutants for evaluation of applications in production of reporter proteins in stable transgenic plants. METHODS: The full-length promoter of SVBV (SP1) and its three deletion mutants (SP2, SP3, and SP4) were amplified using polymerase chain reaction. The effects of SVBV SP1, SP2, SP3, and SP4 on gene expression were evaluated using ß-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes. RESULTS: Transient expression assays showed that the SVBV SP1 promoter and its three deletion mutants all expressed the reporter genes, albeit at very different levels. Interestingly, transcriptional activity driven by the SP1 promoter was much higher than that of the cauliflower mosaic virus (CaMV) 35S promoter. After stable transformation of the GUS gene into Nicotiana tabacum plants, SVBV SP1-driven transgene expression was approximately 2.6-fold higher than CaMV 35S promoter-driven transgene expression. In addition, GUS gene expression levels were enhanced by co-inoculation of the plants with the SP1 promoter-driven vector carrying the GUS gene and the vector expressing SVBV open reading frame (ORF) V or ORF VI. CONCLUSIONS: The SVBV SP1 promoter from the Chinese isolate evaluated in this study could successfully drive transient and stable expression in plants, it was a stronger promoter than the CaMV 35S and FLt-US promoters and may be more useful for the production of stable transgenic plants.


Subject(s)
Caulimovirus , Caulimovirus/genetics , Genes, Reporter , Plants, Genetically Modified/genetics , Promoter Regions, Genetic
5.
Langmuir ; 37(24): 7617-7624, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34115506

ABSTRACT

A series of Al-doped BiVO4 composites have been synthesized via the hydrothermal method for methylene blue (MB) degradation application. The reasons for the improvement of photocatalytic performance was explained from the perspective of optics. Transient photovoltage (TPV) measurements suggested that the surface states have the priority to capture photogenerated carriers, and the Al2O3 surface passivation layer can prolong the lifetime of charge carrier. The results of surface photovoltage (SPV), transient photovoltage (TPV), and surface photocurrent (SPC) measurements suggested that the coexistence of Al3+ and Al2O3 caused by the appropriate doping would improve the transfer property and prolong the lifetime of photogenerated carriers. Finally, the possible photocatalytic mechanism is expounded to illustrate the photogenerated charge behavior under visible light irradiation. This work provides a better understanding of the synergistic effect of Al-doping and Al2O3 passivation layer on enhancing the photocatalytic performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...