Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 261: 124665, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37209585

ABSTRACT

The biological molecules used in the sandwich detection method have problems such as complex extraction processes, high costs, and uneven quality. Therefore we integrated glycoprotein molecularly controllable-oriented surface imprinted magnetic nanoparticles (GMC-OSIMN) and boric acid functionalized pyrite nanozyme probe (BPNP) to replace the traditional antibody and horseradish peroxidase for sensitive detection of glycoproteins through sandwich detection. In this work, a novel nanozyme functionalized with boric acid was used to label glycoproteins that were captured by GMC-OSIMN. The substrate in the working solution catalyzed by the nanozyme labeled on the protein underwent visible color changes to the naked eye, and the generated signal can be quantitatively detected by a spectrophotometer, and the best color development conditions of the novel nanozyme under the influence of many factors were determined through multi-dimensional investigation. The optimum conditions of sandwich are optimized with ovalbumin (OVA), and it was extended to the detection of transferrin (TRF) and alkaline phosphatase (ALP) in the application. The detection range for TRF was 2.0 × 10-1-1.0 × 104 ng mL-1 with a detection limit of 1.32 × 10-1 ng mL-1, The detection range for ALP was 2.0 × 10-3-1.0 × 102 U L-1 with the detection limit of 1.76 × 10-3 U L-1. This method was subsequently used to detect TRF and ALP levels in 16 liver cancer patients, and the standard deviation of the test results of each patient was less than 5.7%.


Subject(s)
Colorimetry , Polymers , Humans , Polymers/chemistry , Colorimetry/methods , Glycoproteins/chemistry , Transferrin/analysis , Alkaline Phosphatase/metabolism
2.
J Chromatogr A ; 1640: 461962, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33582517

ABSTRACT

In-tube solid-phase microextraction (IT-SPME) with capillary column as extraction device is a well-established green extraction technique with a lot of applications in the fields of biomedicine, food and environment. This article reviews the research contributions of IT-SPME for analysis of proteins. The paper first briefly describes the history of IT-SPME. Then, the development and principle of IT-SPME for analysis of proteins are introduced, in which capillary column configurations of IT-SPME and instruments for quantitative analysis of proteins are summarized. Subsequently, the synthesis strategy and recognition principle of different recognition units, including antibodies, aptamers, molecularly imprinted polymers, and boronate affinity materials, are discussed in detail. This part also introduces several rare recognition units, including lectins, restricted access materials, lysine modified with ß-cyclodextrin and cell membrane. The development trend and possible future direction of IT-SPME for analysis of proteins are mentioned.


Subject(s)
Proteins/analysis , Proteins/isolation & purification , Solid Phase Microextraction/methods , Antibodies/isolation & purification , Boronic Acids/chemistry , Molecular Imprinting , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...