Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38932099

ABSTRACT

Traditional metal-plastic dissimilar welding methods directly heat the metal workpiece, which may cause potential thermal damage to the metal workpiece. Ultrasonic extruded weld-riveting (UEWR) is a relatively new method for dissimilar joining of carbon fiber-reinforced thermoplastic (CFRTP) and metal. In this method, the CFRTP workpiece is melted using the ultrasonic effect and is squeezed into prefabricated holes in the metal workpiece to form a rivet structure. In this method, the metal workpiece is not directly heated, and potential high-temperature losses can be avoided. This paper investigates the process characterizations of UERW of AZ31B magnesium alloy to carbon fiber-reinforced PA66. The process parameters are optimized by the Taguchi method. The joint formation process is analyzed based on the fiber distribution in the cross-sections of joints. The effects of welding parameters on the joint microstructure and fracture surface morphology are discussed. The results show that a stepped amplitude strategy (40 µm amplitude in the first stage and 56 µm amplitude in the second stage) could balance the joint strength and joint appearance. Insufficient (welding energy < 2600 J or amplitude-A < 50%) or excessive (welding energy > 2800 J or amplitude-A > 50%) welding parameters lead to the formation of porous defects. Three fracture modes are identified according to the fracture surface analysis. The maximum tensile shear strength of joints at the optimal parameters is about 56.5 ± 6.2 MPa.

2.
Polymers (Basel) ; 14(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35215596

ABSTRACT

Ultrasonic plastic welding (UPW) is a promising method for joining carbon fiber reinforced thermoplastic (CFRTP). The interface temperature determines weld quality to a large extent. This paper numerically analyzes the contact behavior and temperature characterization during welding using harmonic balance method (HBM). The simulation and experimental results show that amplitude and welding time are important factors determining the interface temperature. Increasing amplitude and welding time can significantly increase the interface temperature. Plunging speed and trigger force have little effect on the interface temperature. For nonlinear contact and heat generation, the results show that there is a certain separation between workpieces and the heat source is mainly friction heat generation in the early stage of welding. With the progress of welding, there is no separation between the workpieces and viscoelastic heat generation begins to dominate.

SELECTION OF CITATIONS
SEARCH DETAIL
...