Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Transfus Med Rev ; 37(3): 150748, 2023 07.
Article in English | MEDLINE | ID: mdl-37827586

ABSTRACT

Biphosphoglycerate mutase (BPGM) is a tri-functional enzyme expressed exclusively in erythroid cells and tissues that is responsible for the production of 2,3-biphosphoglycerate (2,3-BPG) through the Rapoport-Luebering shunt. The 2,3-BPG is required for efficient glycolysis and ATP production under anaerobic conditions, but is also a critical allosteric regulator of hemoglobin (Hb), acting to regulate oxygen release in peripheral tissues. In humans, BPGM deficiency is very rare, and is associated with reduced levels of erythrocytic 2,3-BPG and ATP, left shifted Hb-O2 dissociation curve, low P50, elevated Hb and constitutive erythrocytosis. BPGM deficiency in mice recapitulates the erythroid defects seen in human patients. A recent report has shown that BPGM deficiency in mice affords striking protection against both severe malaria anemia and cerebral malaria. These findings are reminiscent of studies of another erythrocyte specific glycolytic enzyme, Pyruvate Kinase (PKLR), which mutational inactivation protects humans and mice against malaria through impairment of glycolysis and ATP production in erythrocytes. BPGM, and PKLR join glucose-6-phosphate dehydrogenase (G6PD) and other erythrocyte variants as modulating response to malaria. Recent studies reviewed suggest glycolysis in general, and BPGM in particular, as a novel pharmacological target for therapeutic intervention in malaria.


Subject(s)
Intramolecular Transferases , Malaria , Humans , Mice , Animals , Erythrocytes , Hemoglobins , Oxygen , Malaria/drug therapy , Adenosine Triphosphate
2.
Inorg Chem ; 62(6): 2625-2636, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36724211

ABSTRACT

Ternary intermetallic compounds RMn6Ge6 with complex magnetic phase transitions are expected to be developed and applied in spintronic storage and computing devices in the future. The relationship between the crystal structure and physical properties (electrical conductivity, thermal analysis, and complex magnetic transformation) of ErMn6-xCoxGe6 (x = 0-1.45) alloys was studied in the range of 80-600 K. The result shows that the polycrystalline alloys crystallize in the hexagonal HfFe6Ge6 type (P6/mmm). Co doping causes orbital hybridization between Co 2p, Mn 2p, and Er 4d and leads to the presence of mixed valence states of Mn3+ and Mn4+, leading to complex magnetic behaviors: the alloys display a Néel point at a high temperature TN (∼500 K), magnetization increases again at TC (∼250 K), and a second peak in the temperature dependence of magnetization at about Tt (∼150 K), which is spin reorientation. We discuss these phenomena in terms of Mn-Mn, Er-Mn, and Mn3+/Mn4+ and the prospect for potential applications of the studied alloy in magneto memory and new topological kagome magnet fields.

3.
J Virol ; 96(23): e0087922, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36377874

ABSTRACT

The glycan loop of Zika virus (ZIKV) envelope protein (E) contains the glycosylation site and has been well documented to be important for viral pathogenesis and transmission. In the present study, we report that deletions in the E glycan loop, which were recorded in African ZIKV strains previously, have re-emerged in their contemporary Asian lineages. Here, we generated recombinant ZIKV containing specific deletions in the E glycan loop by reverse genetics. Extensive in vitro and in vivo characterization of these deletion mutants demonstrated an attenuated phenotype in an adult A129 mouse model and reduced oral infections in mosquitoes. Surprisingly, these glycan loop deletion mutants exhibited an enhanced neurovirulence phenotype, and resulted in a more severe microcephalic brain in neonatal mouse models. Crystal structures of the ZIKV E protein and a deletion mutant at 2.5 and 2.6 Å, respectively, revealed that deletion of the glycan loop induces encephalitic flavivirus-like conformational alterations, including the appearance of perforations on the surface and a clear change in the topology of the loops. Overall, our results demonstrate that the E glycan loop deletions represent neonatal mouse neurovirulence markers of ZIKV. IMPORTANCE Zika virus (ZIKV) has been identified as a cause of microcephaly and acquired evolutionary mutations since its discovery. Previously deletions in the E glycan loop were recorded in African ZIKV strains, which have re-emerged in the contemporary Asian lineages recently. The glycan loop deletion mutants are not glycosylated, which are attenuated in adult A129 mouse model and reduced oral infections in mosquitoes. More importantly, the glycan loop deletion mutants induce an encephalitic flavivirus-like conformational alteration in the E homodimer, resulting in a significant enhancement of neonatal mouse neurovirulence. This study underscores the critical role of glycan loop deletion mutants in ZIKV pathogenesis, highlighting a need for global virological surveillance for such ZIKV variants.


Subject(s)
Viral Envelope Proteins , Zika Virus Infection , Zika Virus , Animals , Mice , Disease Models, Animal , Polysaccharides/chemistry , Viral Envelope Proteins/genetics , Virulence , Virus Replication/genetics , Zika Virus/genetics , Zika Virus/pathogenicity , Zika Virus Infection/virology
4.
Respir Res ; 22(1): 188, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34183011

ABSTRACT

Xuan-bai-cheng-qi decoction (XCD), a traditional Chinese medicine (TCM) prescription, has been widely used to treat a variety of respiratory diseases in China, especially to seriously infectious diseases such as acute lung injury (ALI). Due to the complexity of the chemical constituent, however, the underlying pharmacological mechanism of action of XCD is still unclear. To explore its protective mechanism on ALI, firstly, a network pharmacology experiment was conducted to construct a component-target network of XCD, which identified 46 active components and 280 predicted target genes. Then, RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) between ALI model rats treated with and without XCD and 753 DEGs were found. By overlapping the target genes identified using network pharmacology and DEGs using RNA-seq, and subsequent protein-protein interaction (PPI) network analysis, 6 kernel targets such as vascular epidermal growth factor (VEGF), mammalian target of rapamycin (mTOR), AKT1, hypoxia-inducible factor-1α (HIF-1α), and phosphoinositide 3-kinase (PI3K) and gene of phosphate and tension homology deleted on chromsome ten (PTEN) were screened out to be closely relevant to ALI treatment. Verification experiments in the LPS-induced ALI model rats showed that XCD could alleviate lung tissue pathological injury through attenuating proinflammatory cytokines release such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß. Meanwhile, both the mRNA and protein expression levels of PI3K, mTOR, HIF-1α, and VEGF in the lung tissues were down-regulated with XCD treatment. Therefore, the regulations of XCD on PI3K/mTOR/HIF-1α/VEGF signaling pathway was probably a crucial mechanism involved in the protective mechanism of XCD on ALI treatment.


Subject(s)
Acute Lung Injury/genetics , Acute Lung Injury/prevention & control , Drugs, Chinese Herbal/therapeutic use , Lipopolysaccharides/toxicity , Network Pharmacology/methods , Sequence Analysis, RNA/methods , Acute Lung Injury/chemically induced , Animals , Drugs, Chinese Herbal/pharmacology , Male , Rats , Rats, Wistar
5.
Cell ; 184(13): 3474-3485.e11, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34143953

ABSTRACT

The capping of mRNA and the proofreading play essential roles in SARS-CoV-2 replication and transcription. Here, we present the cryo-EM structure of the SARS-CoV-2 replication-transcription complex (RTC) in a form identified as Cap(0)-RTC, which couples a co-transcriptional capping complex (CCC) composed of nsp12 NiRAN, nsp9, the bifunctional nsp14 possessing an N-terminal exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), and nsp10 as a cofactor of nsp14. Nsp9 and nsp12 NiRAN recruit nsp10/nsp14 into the Cap(0)-RTC, forming the N7-CCC to yield cap(0) (7MeGpppA) at 5' end of pre-mRNA. A dimeric form of Cap(0)-RTC observed by cryo-EM suggests an in trans backtracking mechanism for nsp14 ExoN to facilitate proofreading of the RNA in concert with polymerase nsp12. These results not only provide a structural basis for understanding co-transcriptional modification of SARS-CoV-2 mRNA but also shed light on how replication fidelity in SARS-CoV-2 is maintained.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/genetics , Exoribonucleases/genetics , Methyltransferases/genetics , SARS-CoV-2/genetics , Amino Acid Sequence , COVID-19/virology , Humans , RNA, Messenger/genetics , RNA, Viral/genetics , Sequence Alignment , Transcription, Genetic/genetics , Virus Replication/genetics
6.
Cell ; 184(1): 184-193.e10, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33232691

ABSTRACT

Transcription of SARS-CoV-2 mRNA requires sequential reactions facilitated by the replication and transcription complex (RTC). Here, we present a structural snapshot of SARS-CoV-2 RTC as it transitions toward cap structure synthesis. We determine the atomic cryo-EM structure of an extended RTC assembled by nsp7-nsp82-nsp12-nsp132-RNA and a single RNA-binding protein, nsp9. Nsp9 binds tightly to nsp12 (RdRp) NiRAN, allowing nsp9 N terminus inserting into the catalytic center of nsp12 NiRAN, which then inhibits activity. We also show that nsp12 NiRAN possesses guanylyltransferase activity, catalyzing the formation of cap core structure (GpppA). The orientation of nsp13 that anchors the 5' extension of template RNA shows a remarkable conformational shift, resulting in zinc finger 3 of its ZBD inserting into a minor groove of paired template-primer RNA. These results reason an intermediate state of RTC toward mRNA synthesis, pave a way to understand the RTC architecture, and provide a target for antiviral development.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/chemistry , Cryoelectron Microscopy , RNA, Messenger/chemistry , RNA, Viral/chemistry , SARS-CoV-2/chemistry , Viral Replicase Complex Proteins/chemistry , Amino Acid Sequence , Coronavirus/chemistry , Coronavirus/classification , Coronavirus/enzymology , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Methyltransferases/metabolism , Models, Molecular , RNA Helicases/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , SARS-CoV-2/enzymology , Sequence Alignment , Transcription, Genetic , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication
7.
Protein Cell ; 11(5): 339-351, 2020 05.
Article in English | MEDLINE | ID: mdl-32328903

ABSTRACT

Genome packaging is a fundamental process in a viral life cycle and a prime target of antiviral drugs. Herpesviruses use an ATP-driven packaging motor/terminase complex to translocate and cleave concatemeric dsDNA into procapsids but its molecular architecture and mechanism are unknown. We report atomic structures of a herpesvirus hexameric terminase complex in both the apo and ADP•BeF3-bound states. Each subunit of the hexameric ring comprises three components-the ATPase/terminase pUL15 and two regulator/fixer proteins, pUL28 and pUL33-unlike bacteriophage terminases. Distal to the nuclease domains, six ATPase domains form a central channel with conserved basic-patches conducive to DNA binding and trans-acting arginine fingers are essential to ATP hydrolysis and sequential DNA translocation. Rearrangement of the nuclease domains mediated by regulatory domains converts DNA translocation mode to cleavage mode. Our structures favor a sequential revolution model for DNA translocation and suggest mechanisms for concerted domain rearrangements leading to DNA cleavage.


Subject(s)
DNA, Viral/metabolism , Herpesviridae/genetics , Herpesviridae/metabolism , Virus Assembly/genetics , DNA Cleavage , DNA, Viral/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...