Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (193)2023 03 03.
Article in English | MEDLINE | ID: mdl-36939253

ABSTRACT

We aimed to study the mechanism of Trichosanthes-Fritillaria thunbergii in treating lung adenocarcinoma (LUAD) based on network pharmacology and experimental verification. The effective components and potential targets of Trichosanthis and Fritillaria thunbergii were collected by high-throughput experiment and reference-guided (HERB) database of traditional Chinese medicine and a similarity ensemble approach (SEA) database, and the LUAD-related targets were queried by the GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. A drug-component-disease-target network was constructed by Cytoscape software. Protein-protein interaction (PPI) network, gene ontology (GO) function, and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were conducted to obtain core targets and key pathways. An aqueous extract of Trichosanthes-Fritillaria thunbergii and A549 cells were used for the subsequent experimental validation. Through the HERB database and literature search, 31 effective compounds and 157 potential target genes of Trichosanthes-Fritillaria thunbergii were screened, of which 144 were regulatory targets of Trichosanthes-Fritillaria thunbergii in the treatment of lung adenocarcinoma. The GO functional enrichment analysis showed that the mechanism of action of Trichosanthes-Fritillaria thunbergii against lung adenocarcinoma is mainly protein phosphorylation. The KEGG pathway enrichment analysis suggested that the treatment of lung adenocarcinoma by Trichosanthes-Fritillaria thunbergii mainly involves the PI3K/AKT signaling pathway. The experimental validation showed that an aqueous extract of Trichosanthes-Fritillaria thunbergii could inhibit the proliferation of A549 cells and the phosphorylation of AKT. Through network pharmacology and experimental validation, it was verified that the PI3K/AKT signaling pathway plays a vital role in the action of Trichosanthes-Fritillaria thunbergii in treating lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Fritillaria , Lung Neoplasms , Trichosanthes , Humans , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Adenocarcinoma of Lung/drug therapy , Databases, Genetic , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Molecular Docking Simulation
2.
Viruses ; 14(11)2022 11 17.
Article in English | MEDLINE | ID: mdl-36423156

ABSTRACT

Rice stripe virus (RSV) is one of the most important viral pathogens of rice in East Asia. The origin and dispersal of RSV remain poorly understood, but an emerging hypothesis suggests that: (i) RSV originates from Yunnan, a southwest province of China; and (ii) some places of eastern China have acted as a center for the international dissemination of RSV. This hypothesis, however, has never been tested rigorously. Using a data set comprising more than 200 time-stamped coat protein gene sequences of RSV from Japan, China and South Korea, we reconstructed the phylogeographic history of RSV with Bayesian phylogeographic inference. Unexpectedly, the results did not support the abovementioned hypothesis. Instead, they suggested that RSV originates from Japan and Japan has been the major center for the dissemination of RSV in the past decades. Based on these data and the temporal dynamics of RSV reported recently by another group, we proposed a new hypothesis to explain the origin and dispersal of RSV. This new hypothesis may be valuable for further studies aiming to clarify the epidemiology of RSV. It may also be useful in designing management strategies against this devastating virus.


Subject(s)
Oryza , Tenuivirus , Tenuivirus/genetics , Japan/epidemiology , Bayes Theorem , China
3.
Biosensors (Basel) ; 12(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35884344

ABSTRACT

Waterless transportation for live grouper is a novel mode of transport that not only saves money, but also lowers wastewater pollution. Technical obstacles remain, however, in achieving intelligent monitoring and a greater survival rate. During live grouper waterless transportation, the stress response is a key indicator that affects the survival life-span of the grouper. Studies based on breathing rate analysis have demonstrated that among many stress response parameters, breathing rate is the most direct parameter to reflect the intensity. Conventional measurement methods, which set up sensors on the gills of groupers, interfere with the normal breathing of living aquatic products and are complex in system design. We designed a new breathing monitoring system based on a completely non-destructive approach. The system allows the real-time monitoring of living aquatic products' breathing rate by simply placing the millimeter wave radar on the inner wall of the incubator and facing the gills. The system we developed can detect more parameters in the future, and can replace the existing system to simplify the study of stress responses.


Subject(s)
Biosensing Techniques , Radar , Animals , Fishes , Monitoring, Physiologic/methods , Respiration
4.
Virus Res ; 285: 197941, 2020 08.
Article in English | MEDLINE | ID: mdl-32387400

ABSTRACT

Helminthosporium victoriae virus 190S (HvV190S) is the type species of the genus Victorivirus under the family Totiviridae. To date, HvV190S has never been found in places outside of the USA and has Helminthosporium victoriae as its only know natural host fungus in the field. Here, we report the identification of 4 double-stranded RNA (dsRNA) viruses from Bipolaris maydis in Hubei province of China. Interestingly, the genomes of the 4 viruses show 81.2 %-85.5 % nucleotide sequence identities to HvV190S. Their capsid protein (CP) and RNA-dependent RNA polymerase (RdRp) share 95.5-97.9 % and 94.6-96.6 % amino acid sequence identities to corresponding proteins of HvV190S. Therefore, the 4 viruses, which show 81.8-87.3 % pairwise genome sequence identities, should be considered as distinct isolates of HvV190S. Our finding suggests that HvV190S is widely distributed in the world and may infect fungal species other than H. victoriae.


Subject(s)
Bipolaris/virology , Totiviridae/isolation & purification , Capsid Proteins/genetics , China , Genome, Viral , RNA, Double-Stranded , RNA, Viral , RNA-Dependent RNA Polymerase/genetics
5.
Virology ; 539: 114-120, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31710910

ABSTRACT

Like their animal-infecting counterparts, plant bunyaviruses use capped RNA leaders cleaved from host cellular mRNAs to prime viral genome transcription in a process called cap-snatching, but in vivo systems to investigate the details of this process are lacking for them. Here, we report that Rice stripe tenuivirus (RSV) and Tomato spotted wilt tospovirus (TSWV) cleave capped RNA leaders from mRNAs transiently expressed by agroinfiltration, which makes it possible to artificially deliver defined cap donors to the two plant bunyaviruses with unprecedented convenience. With this system, some ideas regarding how plant bunyaviruses select and use capped RNA leaders can be tested easily. We were also able to obtain clear evidence that the capped RNA leaders selected by TSWV are generally longer than those by RSV. TSWV frequently uses the prime-and-realign mechanism in transcription primed by capped RNA leaders shorter than a certain length, like that has been demonstrated recently for RSV.


Subject(s)
Bunyaviridae/genetics , RNA Caps/genetics , RNA Caps/metabolism , 3' Untranslated Regions , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Base Pairing , Bunyaviridae/metabolism , Genome, Viral , Plant Leaves/virology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , Species Specificity , Tenuivirus/genetics , Tenuivirus/metabolism , Nicotiana/virology , Tospovirus/genetics , Tospovirus/metabolism , Transcription, Genetic
6.
Microb Pathog ; 118: 91-97, 2018 May.
Article in English | MEDLINE | ID: mdl-29548695

ABSTRACT

Begomoviruses (Geminiviridea), transmitted by whiteflies, constitute one of the most dangerous groups of plant viruses posing a severe threat to economically important crops in tropical and sub-tropical areas. In this study, whiteflies were collected from various locations all over Pakistan. The begomoviruses carried by these whiteflies were detected by PCR with the degenerative primers pair AV94/Dep3. Analysis of the 177 sequences obtained in our study, revealed 14 distinct begomovirus species, including five which were not previously reported in this country. Putative novel strains of Corchorus yellow vein virus (CoYVV) and Chilli leaf curl virus (ChiLCV) showing less than 90% identity with the previously available taxa were also identified. The greatest number of begomoviruses per single site was detected in Sindh province, where up to five different begomovirus species were identified from the same cropping field. Moreover, Cotton leaf curl Multan virus - Rajasthan (CLCuMuV-Ra) was found prevalent in all the cotton growing areas. The data reported here may be useful in the development of control measures against begomoviruses.


Subject(s)
Begomovirus/classification , Begomovirus/genetics , Begomovirus/isolation & purification , Genetic Variation , Phylogeny , Plant Diseases/virology , Animals , Base Sequence , Begomovirus/pathogenicity , DNA, Viral/analysis , DNA, Viral/isolation & purification , Evolution, Molecular , Gossypium/virology , Hemiptera/virology , Pakistan , Phylogeography , Plant Leaves/virology , Sequence Analysis , Sequence Analysis, DNA , Species Specificity , Nicotiana/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...