Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plant Commun ; 5(1): 100672, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37563834

ABSTRACT

Some fungal accessory chromosomes (ACs) may contribute to virulence in plants. However, the mechanisms by which ACs determine specific traits associated with lifestyle transitions along a symbiotic continuum are not clear. Here we delineated the genetic divergence in two sympatric but considerably variable isolates (16B and 16W) of the poplar-associated fungus Stagonosporopsis rhizophilae. We identified a âˆ¼0.6-Mb horizontally acquired AC in 16W that resulted in a mildly parasitic lifestyle in plants. Complete deletion of the AC (Δ16W) significantly altered the fungal phenotype. Specifically, Δ16W was morphologically more similar to 16B, showed enhanced melanization, and established beneficial interactions with poplar plants, thereby acting as a dark septate endophyte. RNA sequencing (RNA-seq) analysis showed that AC loss induced the upregulation of genes related to root colonization and biosynthesis of indole acetic acid and melanin. We observed that the AC maintained a more open status of chromatin across the genome, indicating an impressive remodeling of cis-regulatory elements upon AC loss, which potentially enhanced symbiotic effectiveness. We demonstrated that the symbiotic capacities were non-host-specific through comparable experiments on Triticum- and Arabidopsis-fungus associations. Furthermore, the three isolates generated symbiotic interactions with a nonvascular liverwort. In summary, our study suggests that the AC is a suppressor of symbiosis and provides insights into the underlying mechanisms of mutualism with vascular plants in the absence of traits encoded by the AC. We speculate that AC-situated effectors and other potential secreted molecules may have evolved to specifically target vascular plants and promote mild virulence.


Subject(s)
Ascomycota , Symbiosis , Symbiosis/genetics , Endophytes/genetics , Trees/genetics , Ascomycota/genetics , Plants/genetics , Chromosomes
2.
Sci Total Environ ; 809: 151179, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34742954

ABSTRACT

Environmental changes derived from various human activities have largely disturbed the structure and functioning of various biological communities. However, little is known on how such disturbance impacts species interactions in biological communities. This study aims to elucidate the variation of species interactions across multiple trophic levels and further determine crucial factor(s) in regulating observed variation. We collected plankton samples from Sanjiang Wetlands in Northeastern China and used random matrix theory (MRT)-based approach to construct species interaction networks for bacterioplanktons, protozoans, and metazoans, respectively. We found that biotic interactions were more complex at lower trophic levels. Network key species (e.g., module hubs and connectors) were detected only in the bacterioplankton network. More inter- and intra-module connections, particularly negative connections, were detected in the bacterioplankton network. Across all three trophic levels, the element sodium (Na) was the most important factor influencing the network structure, while at each trophic level, physicochemical factors, nutrients, and organic pollutants were identified as crucial determinants but their relative importance differed. In particular, no correlation was detected between the metazoan network and any environmental factor. After separating protozoan and metazoan communities into subgroups in relatively poor and good water environments, we found community interaction networks were more complex in good conditions than in poor conditions. A simple network structure (e.g., no inter-module connectors or intra-module hubs, and less competitive links) and less association with environmental factors in the higher trophic levels clearly illustrate that metazoan and protozoan communities in the fragmented wetlands are unstable and vulnerable. Therefore, further environmental changes may greatly influence species interactions in these communities. Collectively, our findings provide new insights into dynamics of influence of environmental changes on biotic interactions in aquatic biological communities, highlighting the necessity to use a multi-trophic strategy when assessing negative effects of environmental changes in aquatic ecosystems.


Subject(s)
Ecosystem , Wetlands , Animals , Anthropogenic Effects , Biota , Humans , Plankton
3.
Plant Cell Environ ; 44(8): 2793-2809, 2021 08.
Article in English | MEDLINE | ID: mdl-33764571

ABSTRACT

Several species of soil free-living saprotrophs can sometimes establish biotrophic symbiosis with plants, but the basic biology of this association remains largely unknown. Here, we investigate the symbiotic interaction between a common soil saprotroph, Clitopilus hobsonii (Agaricomycetes), and the American sweetgum (Liquidambar styraciflua). The colonized root cortical cells were found to contain numerous microsclerotia-like structures. Fungal colonization led to increased plant growth and facilitated potassium uptake, particularly under potassium limitation (0.05 mM K+ ). The expression of plant genes related to potassium uptake was not altered by the symbiosis, but colonized roots contained the transcripts of three fungal genes with homology to K+ transporters (ACU and HAK) and channel (SKC). Heterologously expressed ChACU and ChSKC restored the growth of a yeast K+ -uptake-defective mutant. Upregulation of ChACU transcript under low K+ conditions (0 and 0.05 mM K+ ) compared to control (5 mM K+ ) was demonstrated in planta and in vitro. Colonized plants displayed a larger accumulation of soluble sugars under 0.05 mM K+ than non-colonized plants. The present study suggests reciprocal benefits of this novel tree-fungus symbiosis under potassium limitation mainly through an exchange of additional carbon and potassium between both partners.


Subject(s)
Agaricales/physiology , Liquidambar/physiology , Plant Roots/microbiology , Potassium/metabolism , Symbiosis/physiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Gene Expression Regulation, Plant , Liquidambar/growth & development , Liquidambar/microbiology , Mycorrhizae/physiology , Phylogeny , Plant Roots/metabolism , Soil Microbiology , Sugars/metabolism , Yeasts/genetics
4.
Chemosphere ; 272: 129600, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33482522

ABSTRACT

Soil salinization is a global environmental problem and one of the most common land degradation processes. To effectively utilize saline lands, it is crucial to improve plant growth and stress tolerance, particularly through the microbiome intervention strategy. However, less is known about the interactions of microbes with trees than those with crops or herbaceous plants. Here, we examined how natural soil microbes affected the performance of salt-sensitive Populus deltoides × P. euramericana 'Nanlin895' (NL895) under salt stress. Gnotobiotic NL895 plantlets were inoculated with soil microbiome extracted from no-salt (NS; soluble salt: 0.71 g/kg), low-salt (LS; 5.14 g/kg), and high-salt (HS; 23.07 g/kg) lands, and then exposed to salt treatments. Compared to control, 33.8%, 18.0%, and 29.9% of the aboveground biomass was increased by NS, LS, and HS inoculation, respectively. The salt injury index was lower in LS and HS than in NS treatments. Rhizosphere microbial communities of all treatments were taxonomically and functionally different across multiple stages, while the variation extent was larger in bacterial than in fungal communities. FUNGuild and PICRUSt2 analysis demonstrated the changes of fungal trophic modes and bacterial metabolic pathways, respectively. In summary, our findings revealed the stronger potential of NS than LS and HS inoculants in growth promotion, while weaker strength than LS and HS inoculants in enhancing salt tolerance of NL895 plantlets. This source-dependent effect should be considered in future microbiome engineering, aiming at harnessing soil microbes to create predictable plant phenotypes.


Subject(s)
Microbiota , Populus , Plant Roots , Salinity , Salt Tolerance , Soil , Soil Microbiology
5.
Ambio ; 49(1): 197-207, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31020611

ABSTRACT

Risks of pathogenic bacteria to the health of both human beings and water ecosystems have been widely acknowledged. However, traditional risk assessment methods based on fecal indicator bacteria and/or pure culture are not comprehensive at the community level, mainly owing to the limited taxonomic coverage. Here, we combined the technique of high-throughput sequencing and the concept of metacommunity to assess the potential pathogenic bacterial communities in an economically and ecologically crucial but highly polluted river-the North Canal River (NCR) in Haihe River Basin located in North China. NCR presented a significant environmental gradient, with the highest, moderate, and lowest levels of pollution in the up-, middle, and downstream. After multiple analyses, we successfully identified 48 genera, covering nine categories of potential pathogens (mainly human pathogens). The most abundant genus was Acinetobacter, which was rarely identified as a pathogen bacterium in previous studies of NCR. At the community level, we observed significant geographical variation of community composition and structure. Such a high level of geographical variation was mainly derived from differed abundance of species among sections along the river, especially the top seven Operational Taxonomic Units (OTUs). For example, relative abundance of OTU1 (Gammaproteobacteria/Acinetobacter) increased significantly from upstream towards downstream. Regarding the underlying mechanisms driving community geographical variation, environmental filtering was identified as the dominant ecological process and total nitrogen as the most influential environmental variable. Altogether, this study provided a comprehensive profile of potential pathogenic bacteria in NCR and revealed the underlying mechanisms of community succession. Owing to their high abundance and wide geographical distribution, we suggest that potential pathogens identified in this study should be incorporated into future monitoring and management programs in NCR. By revealing the correlation between environmental factors and community composition, the results obtained in this study have significant implications for early warning and risk assessment of potential pathogen bacteria, as well as management practices in highly polluted river ecosystems.


Subject(s)
Ecosystem , Rivers , Bacteria , China , Environmental Monitoring , Humans , Nitrogen
6.
Environ Pollut ; 245: 290-299, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30445416

ABSTRACT

Anthropogenic activity-mediated nutrient pollution, especially nitrogen enrichment, poses one of the major threats to river ecosystems. However, it remains unclear how and to which extent it affects aquatic microbial communities, especially in heavily polluted rivers. In this study, a significant environmental gradient, particularly nitrogen gradient, was observed along a wastewater receiving river, the North Canal River (NCR). The pollution level was highest, moderate, and lowest in the up-, middle, and down-streams, respectively. The community composition of bacterioplankton transitioned from being Betaproteobacteria-dominated upstream to Gammaproteobacteria-dominated downstream. Copiotrophic groups, such as Polynucleobacter (Betaproteobacteria) and Hydrogenophaga (Betaproteobacteria), were dominant in the upstream. Multiple statistical analyses indicated that total nitrogen (TN) was the most important factor driving the adaptive shifts of community structure. Analyses of co-occurrence networks showed that the complexity of networks was disrupted in the up- and middle streams, while enhanced in the downstream. Our findings here suggested that microbial interactions were reduced in response to the aggravation of nutrient pollution. Similar to these changes, we observed significant dissimilarity of composition of functional groups, with highest abundance of nitrogen metabolism members under the highest level of nitrogen enrichment. Further analyses indicated that most of these functional groups belonged to Betaproteobacteria, suggesting the potential coupling of community composition and function diversity. In summary, adaptive shifts of bacterioplankton community composition, as well as species interactions, occurred in response to nutrient pollution in highly polluted water bodies.


Subject(s)
Aquatic Organisms/drug effects , Environmental Monitoring/methods , Microbiota/drug effects , Nitrogen/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Betaproteobacteria/drug effects , China , Ecosystem , Eutrophication , Gammaproteobacteria/drug effects , Nitrogen/toxicity , Rivers/microbiology , Water Pollutants, Chemical/toxicity
7.
Sci Rep ; 8(1): 13314, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30190564

ABSTRACT

The gut microbime plays an important role in the health of wild animals. This microbial community could be altered by habitat pollution and other human activities that threaten the host organisms. Here, we satellite-tracked a flock of swan geese (Anser cygnoides) migrating from their breeding area (Khukh Lake, Mongolia), with low levels of human activity, to their wintering area (Poyang Lake, China) which has been heavily impacted by human activities. Twenty fecal samples were collected from each site. High-throughput sequencing of 16S and ITS was employed to explore bacterial and fungal composition and diversity of their gut microbiome. Although general composition, alpha-diversity, functional prediction, and the central taxa in the phylogenetic networks showed some similarities between the two habitats, significant divergences were detected in terms of beta-diversity, species abundances, and interaction network topologies. In addition, disease-related and xenobiotic biodegradation pathways, and pathogenic bacteria were significantly increased in bacterial communities from samples at Poyang Lake. Our results reveal that the gut microbiome of swan geese, while somewhat altered after long-distance migration, still maintained a core group of species. We also show that habitat environmental stress could impact these gut microbial communities, suggesting that habitat pollution could indirectly threaten wild animals by altering their gut microbiome.


Subject(s)
Animal Migration , Bacteria , Ecosystem , Fungi , Gastrointestinal Microbiome , Geese/microbiology , Phylogeny , Animals , Bacteria/classification , Bacteria/growth & development , Fungi/classification , Fungi/growth & development
8.
Ecol Evol ; 8(10): 4830-4840, 2018 May.
Article in English | MEDLINE | ID: mdl-29876061

ABSTRACT

Dispersal, rather than species sorting, is widely recognized as the dominant driver for determining meta-community structure at fine geographical scales in running water ecosystems. However, this view has been challenged by a recently proposed "fine-scale species sorting hypothesis," where community structure can be largely determined by an environmental gradient formed by local pollution at fine scales. Here, we tested this hypothesis by studying community composition and geographical distribution of metazoan zooplankton in a heavily polluted river-the North Canal River in the Haihe River Basin, China. Analysis of similarity (ANOSIM) showed that the community composition of metazoan zooplankton differed significantly (p = .001) along the environmental gradient. Ammonium (NH4-N) was the leading factor responsible for changes in zooplankton community structure and geographical distribution, followed by total dissolved solid (TDS), Na, dissolved oxygen (DO) and temperature (T). Variation partitioning revealed a larger contribution of environmental variables (21.6%) than spatial variables (1.1%) to the total explained variation of zooplankton communities. Our results support that species sorting, rather than dispersal, played a key role in structuring communities. Threshold Indicator Taxa ANalysis (TITAN) also revealed significant change points at both taxon and community levels along the gradient of NH4-N, providing further support for the influence of environmental variables on zooplankton communities. Collectively, we validate the fine-scale species sorting hypothesis when an environmental gradient exists in running water ecosystems at fine geographical scales. However, future studies on interactions between pollutants and zooplankton communities are still needed to better understand mechanisms responsible for the meta-community dynamics.

9.
Data Brief ; 17: 141-147, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29349109

ABSTRACT

Here we presented two datasets (biological and environmental datasets) collected in a comprehensive large geographical scale (approximately 1.1×105 km2) survey of rivers/streams in the Haihe River Basin (HRB), which has become the most polluted river basin in past two decades in China. The survey selected a total of 94 representative sampling sites in the plain region of HRB, where environmental pollution is more severe than the mountain region. The biological dataset contains the information on the identified rotifer species and their abundance, while the environmental dataset provides the measured environmental variables at each sampling site. Based on this ecological survey, we identified a total of 91 rotifer species and their abundance, as well as abundance of two crucial taxonomic groups on rotifers' food webs (i.e., protozoans and crustaceans), and also presented seven environmental variables, particularly those associated with nitrogen and phosphorus pollution.

10.
PeerJ ; 4: e2345, 2016.
Article in English | MEDLINE | ID: mdl-27602302

ABSTRACT

Food availability and diet selection are important factors influencing the abundance and distribution of wild waterbirds. In order to better understand changes in waterbird population, it is essential to figure out what they feed on. However, analyzing their diet could be difficult and inefficient using traditional methods such as microhistologic observation. Here, we addressed this gap of knowledge by investigating the diet of greater white-fronted goose Anser albifrons and bean goose Anser fabalis, which are obligate herbivores wintering in China, mostly in the Middle and Lower Yangtze River floodplain. First, we selected a suitable and high-resolution marker gene for wetland plants that these geese would consume during the wintering period. Eight candidate genes were included: rbcL, rpoC1, rpoB, matK, trnH-psbA, trnL (UAA), atpF-atpH, and psbK-psbI. The selection was performed via analysis of representative sequences from NCBI and comparison of amplification efficiency and resolution power of plant samples collected from the wintering area. The trnL gene was chosen at last with c/h primers, and a local plant reference library was constructed with this gene. Then, utilizing DNA metabarcoding, we discovered 15 food items in total from the feces of these birds. Of the 15 unique dietary sequences, 10 could be identified at specie level. As for greater white-fronted goose, 73% of sequences belonged to Poaceae spp., and 26% belonged to Carex spp. In contrast, almost all sequences of bean goose belonged to Carex spp. (99%). Using the same samples, microhistology provided consistent food composition with metabarcoding results for greater white-fronted goose, while 13% of Poaceae was recovered for bean goose. In addition, two other taxa were discovered only through microhistologic analysis. Although most of the identified taxa matched relatively well between the two methods, DNA metabarcoding gave taxonomically more detailed information. Discrepancies were likely due to biased PCR amplification in metabarcoding, low discriminating power of current marker genes for monocots, and biases in microhistologic analysis. The diet differences between two geese species might indicate deeper ecological significance beyond the scope of this study. We concluded that DNA metabarcoding provides new perspectives for studies of herbivorous waterbird diets and inter-specific interactions, as well as new possibilities to investigate interactions between herbivores and plants. In addition, microhistologic analysis should be used together with metabarcoding methods to integrate this information.

11.
Sci Rep ; 6: 32655, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27600170

ABSTRACT

Microorganisms in vertebrate guts have been recognized as important symbionts influencing host life. However, it remains unclear about the gut microbiota in long-distance migratory Anseriformes herbivores, which could be functionally important for these wetland-dependent animals. We collected faeces of the greater white-fronted goose (GWFG), bean goose (BG) and swan goose (SG) from Shengjin Lake (SJL) and Poyang Lake (PYL) in the Yangtze River Floodplain, China. High-throughput sequencing of 16S rRNA V4 region was employed to depict the composition and structure of geese gut microbiota during wintering period. The dominant bacterial phyla across all samples were Firmicutes, Proteobacteria and Actinobacteria, but significant variations were detected among different goose species and sampling sites, in terms of α diversity, community structures and microbial interactions. We found a significant correlation between diet and the microbial community structure in GWFG-SJL samples. These results demonstrated that host species and diet are potential drivers of goose gut microbiota assemblies. Despite these variations, functions of geese gut microbiota were similar, with great abundances of potential genes involved in nutrient metabolism. This preliminary study would be valuable for future, exhaustive investigations of geese gut microbiota and their interactions with host.


Subject(s)
Anseriformes/microbiology , Gastrointestinal Microbiome , Herbivory , Seasons , Animals , Anseriformes/genetics , Biodiversity , Diet , Lakes , Multigene Family , Phylogeny , Principal Component Analysis , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...