Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Asian Nat Prod Res ; 25(6): 581-594, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36151896

ABSTRACT

Oleanolic acid (OA) is a five-ring triterpenoid compound, which is widely present in plants. Due to a wide range of pharmacological activities, oleanolic acid has attracted more and more attention. However, oleanolic acid is insoluble in water and has low bioavailability, which limits its clinical application. In this review, we focus on summarizing the anti-cancer activity and mechanism of the A ring or C-28 carboxyl modified derivatives of OA since 2015, to determine the strength of its anti-cancer effectiveness and evaluate whether it could be used as a clinical anti-cancer drug.


Subject(s)
Antineoplastic Agents , Oleanolic Acid , Oleanolic Acid/pharmacology , Antineoplastic Agents/pharmacology
2.
Neurobiol Learn Mem ; 179: 107383, 2021 03.
Article in English | MEDLINE | ID: mdl-33460788

ABSTRACT

BACKGROUND: Inaccurate fear memories can be maladaptive and potentially portrait a core symptomatic dimension of fear adaptive disorders such as post-traumatic stress disorder (PTSD), which is generally characterized by an intense and enduring memory for the traumatic events. Evidence exists in support of epigenetic regulation of fear behavior. Brd4, a member of the bromodomain and extra-terminal domain (BET) protein family, serves as a chromatin "reader" by binding to histones in acetylated lysine residues, and hence promotes transcriptional activities. However, less is known whether Brd4 participates in modulating cognitive activities especially memory formation and extinction. Here we provide evidence for a role of Brd4 in modulation of auditory fear memory. Auditory fear conditioning resulted in a biphasic Brd4 activation in the anterior cingulate cortex (ACC) and hippocampus of adult mice. Thus, Brd4 phosphorylation occurred 6 h and 3-14 days, respectively, after auditory fear conditioning. Systemic inhibition of Brd4 with a BET inhibitor, JQ1, impaired the extinction of remote (i.e., 14 days after conditioning) fear memory. Further, conditional Brd4 knockout in excitatory neurons of the forebrain impaired remote fear extinction as observed in the JQ1-treated mice. Herein, we identified that Brd4 is essential for extinction of remote fear in rodents. These results thus indicate that Brd4 potentially plays a role in the pathogenesis of PTSD.


Subject(s)
Acoustic Stimulation , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Fear , Gyrus Cinguli/metabolism , Hippocampus/metabolism , Memory/physiology , Nuclear Proteins/genetics , Transcription Factors/genetics , Animals , Azepines/pharmacology , Conditioning, Classical/drug effects , Epigenesis, Genetic , Extinction, Psychological/drug effects , Memory/drug effects , Memory, Long-Term/drug effects , Memory, Long-Term/physiology , Mice , Mice, Knockout , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Triazoles/pharmacology
3.
Neuropharmacology ; 177: 108255, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32730819

ABSTRACT

Fear extinction is an important preclinical model for behavior therapy in human anxiety disorders, such as post-traumatic stress disorder (PTSD). Histone acetylation is involved in the extinction of fear memory. As the "readers" of histone acetylation markers, the role of the bromodomain and extraterminal domain (BET) proteins in fear extinction is still unclear. In the present study, we found that suppression of BET proteins using small molecule JQ-1 had no effects on the acquisition of auditory fear or on the extinction of recent auditory fear, but it impaired the extinction of remote auditory fear. We found that insulin like growth factor 2 (IGF-2) mRNA and protein were up-regulated in the anterior cingulate cortex (ACC) after the extinction training of remote fear memory, and that this effect was inhibited by JQ-1 administration. Further, the local delivery of IGF-2 protein to the ACC region rescued the impaired extinction of remote memory caused by JQ-1 administration, which suggesting IGF-2 mediates the effects of JQ-1 on remote memory extinction. Gene expression profiling analysis demonstrated that JQ-1 treatment inhibited the up-regulated expression of a key set of neuroplasticity-related genes following remote memory extinction. Together, these findings establish BET proteins as epigenetic mediator for the extinction of remote fear memory. In particular, the findings of this study imply that as a prospective preclinical cancer drug, JQ-1 (or other BET bromodomain inhibitors) should be modified to prevent it from crossing the blood brain barrier and causing neurological side effects.


Subject(s)
Azepines/pharmacology , Extinction, Psychological/physiology , Fear/physiology , Insulin-Like Growth Factor II/metabolism , Memory, Long-Term/physiology , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Triazoles/pharmacology , Animals , Extinction, Psychological/drug effects , Fear/drug effects , Fear/psychology , Male , Memory, Long-Term/drug effects , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/antagonists & inhibitors , Receptors, Cell Surface/antagonists & inhibitors
4.
Arch Pharm (Weinheim) ; 353(7): e2000044, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32342549

ABSTRACT

Resveratrol is a natural phytoestrogen produced by plants to protect themselves from injury, UV irradiation, and fungal attack. The main active structure is E-resveratrol, which has many pharmacological activities. As the structure of resveratrol is similar to the natural estrogen 17ß-estradiol and the synthetic estrogen E-diethylstilbestrol, resveratrol is used in reducing the incidence of breast cancer. However, the therapeutic application of resveratrol is limited due to its low bioavailability. To improve its bioavailability and pharmacological activity, some resveratrol derivatives have been designed and synthesized by substitutions of methoxy, hydroxyl, and other functional groups or heterocyclic esterification either on the "A" or "B" ring, and double bonds were replaced by imine bonds and isometric heterocycles such as naphthyl and imidazole, or synthetic resveratrol oligomers. The structures, synthetic routes, and evaluation of the biological activities of these compounds are discussed. These are aimed at providing some references for the study of resveratrol derivatives in anti-breast cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Resveratrol/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Molecular Structure , Resveratrol/chemical synthesis , Resveratrol/chemistry
5.
J Asian Nat Prod Res ; 19(5): 489-503, 2017 May.
Article in English | MEDLINE | ID: mdl-27690628

ABSTRACT

Numerous biological activities including antioxidant, antitumor, anti-inflammation, and antivirus of the natural product curcumin were reported. However, the clinical application of it was significantly limited by its instability, poor solubility, less body absorbing, and low bioavailability. This review focuses on the structure modification and antioxidant activity evaluation of curcumin. To study the structure-activity relationship (SAR), five series of curcumin analogs were synthesized and their antioxidant activity were evaluated in vitro. The results showed that electron-donating groups, especially the phenolic hydroxyl group are an essential component to improve the antioxidant activity.


Subject(s)
Antioxidants , Curcumin , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Curcumin/analogs & derivatives , Curcumin/chemical synthesis , Curcumin/chemistry , Curcumin/pharmacology , Humans , Molecular Structure , Structure-Activity Relationship
6.
Eur J Med Chem ; 45(8): 3453-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20494492

ABSTRACT

In an attempt to develop potent and selective antitumor agents, a series of liquiritigenin thiosemicarbazone derivatives were designed and synthesized. The cytotoxicities of these compounds were evaluated in vitro against K562, DU-145, SGC-7901, HCT-116 and Hela cell lines. The pharmacological results showed that most of the prepared compounds displayed excellent selective cytotoxicity toward K562 and DU-145 cells. From the structure-activity relationships we may conclude that the introduction of a thiosemicarbazone functional group at the 4-position in the skeleton of liquiritigenin is associated with an increase in cytotoxicity.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Flavanones/chemistry , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Estrogens/metabolism , Humans , Inhibitory Concentration 50 , Thiosemicarbazones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...