Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Adv Exp Med Biol ; 1433: 87-111, 2023.
Article in English | MEDLINE | ID: mdl-37751137

ABSTRACT

KDM4 histone demethylases mainly catalyze the removal of methyl marks from H3K9 and H3K36 to epigenetically regulate chromatin structure and gene expression. KDM4 expression is strictly regulated to ensure proper function in a myriad of biological processes, including transcription, cellular proliferation and differentiation, DNA damage repair, immune response, and stem cell self-renewal. Aberrant expression of KDM4 demethylase has been documented in many types of blood and solid tumors, and thus, KDM4s represent promising therapeutic targets. In this chapter, we summarize the current knowledge of the structures and regulatory mechanisms of KDM4 proteins and our understanding of their alterations in human pathological processes with a focus on development and cancer. We also review the reported KDM4 inhibitors and discuss their potential as therapeutic agents.


Subject(s)
Jumonji Domain-Containing Histone Demethylases , Neoplasms , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , DNA Repair , Cell Proliferation , Cell Differentiation , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histone Demethylases/therapeutic use , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use
2.
J Biomol Struct Dyn ; 40(3): 1331-1346, 2022 02.
Article in English | MEDLINE | ID: mdl-33016237

ABSTRACT

SARS-CoV-2, an emerging coronavirus, has spread rapidly around the world, resulting in over ten million cases and more than half a million deaths as of July 1, 2020. Effective treatments and vaccines for SARS-CoV-2 infection do not currently exist. Previous studies demonstrated that nonstructural protein 16 (nsp16) of coronavirus is an S-adenosyl methionine (SAM)-dependent 2'-O-methyltransferase (2'-O-MTase) that has an important role in viral replication and prevents recognition by the host innate immune system. In the present study, we employed structural analysis, virtual screening, and molecular simulation approaches to identify clinically investigated and approved drugs which can act as promising inhibitors against nsp16 2'-O-MTase of SARS-CoV-2. Comparative analysis of primary amino acid sequences and crystal structures of seven human CoVs defined the key residues for nsp16 2-O'-MTase functions. Virtual screening and docking analysis ranked the potential inhibitors of nsp16 from more than 4,500 clinically investigated and approved drugs. Furthermore, molecular dynamics simulations were carried out on eight top candidates, including Hesperidin, Rimegepant, Gs-9667, and Sonedenoson, to calculate various structural parameters and understand the dynamic behavior of the drug-protein complexes. Our studies provided the foundation to further test and repurpose these candidate drugs experimentally and/or clinically for COVID-19 treatment.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , COVID-19 Vaccines , Humans , Methyltransferases , Molecular Docking Simulation , Molecular Dynamics Simulation , Ribose
3.
Sci Rep ; 11(1): 14784, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34285249

ABSTRACT

Human methyltransferase-like (METTL) proteins transfer methyl groups to nucleic acids, proteins, lipids, and other small molecules, subsequently playing important roles in various cellular processes. In this study, we performed integrated genomic, transcriptomic, proteomic, and clinicopathological analyses of 34 METTLs in a large cohort of primary tumor and cell line data. We identified a subset of METTL genes, notably METTL1, METTL7B, and NTMT1, with high frequencies of genomic amplification and/or up-regulation at both the mRNA and protein levels in a spectrum of human cancers. Higher METTL1 expression was associated with high-grade tumors and poor disease prognosis. Loss-of-function analysis in tumor cell lines indicated the biological importance of METTL1, an m7G methyltransferase, in cancer cell growth and survival. Furthermore, functional annotation and pathway analysis of METTL1-associated proteins revealed that, in addition to the METTL1 cofactor WDR4, RNA regulators and DNA packaging complexes may be functionally interconnected with METTL1 in human cancer. Finally, we generated a crystal structure model of the METTL1-WDR4 heterodimeric complex that might aid in understanding the key functional residues. Our results provide new information for further functional study of some METTL alterations in human cancer and might lead to the development of small inhibitors that target cancer-promoting METTLs.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , GTP-Binding Proteins/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , GTP-Binding Proteins/chemistry , Gene Amplification , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genomics , Humans , Methyltransferases/chemistry , Models, Molecular , Neoplasm Grading , Neoplasms/genetics , Neoplasms/metabolism , Prognosis , Protein Binding , Protein Conformation , Proteomics , Survival Analysis
4.
iScience ; 23(9): 101503, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32911332

ABSTRACT

Dysregulation of inositol-requiring enzyme 1 (IRE1), the primary transducer of Unfolded Protein Response (UPR), has been observed in tumor initiation and progression, but the underlying mechanism remains to be further elucidated. In this study, we identified that the IRE1 gene is frequently amplified and over-expressed in aggressive luminal B breast cancer cells and that IRE1 upregulation is significantly associated with worse overall survival of patients with breast cancer. IRE1 processes and mediates degradation of a subset of tumor suppressor microRNAs (miRNAs), including miR-3607, miR-374a, and miR-96, via a mechanism called Regulated IRE1-Dependent Decay (RIDD). IRE1-dependent degradation of tumor suppressor miR-3607 leads to elevation of RAS oncogene GTPase RAB3B in breast cancer cells. Inhibition of IRE1 endoribonuclease activity with the pharmacological compound 4µ8C or genetic approaches effectively suppresses luminal breast cancer cell proliferation and aggressive cancer phenotypes. Our work revealed the IRE1-RIDD-miRNAs pathway that promotes malignancy of luminal breast cancer.

5.
Cancer Sci ; 111(5): 1829-1839, 2020 May.
Article in English | MEDLINE | ID: mdl-32162442

ABSTRACT

Lysine acetyltransferases (KATs) are a highly diverse group of epigenetic enzymes that play important roles in various cellular processes including transcription, signal transduction, and cellular metabolism. However, our knowledge of the genomic and transcriptomic alterations of KAT genes and their clinical significance in human cancer remains incomplete. We undertook a metagenomic analysis of 37 KATs in more than 10 000 cancer samples across 33 tumor types, focusing on breast cancer. We identified associations among recurrent genetic alteration, gene expression, clinicopathologic features, and patient survival. Loss-of-function analysis was carried out to examine which KAT has important roles in growth and viability of breast cancer cells. We identified that a subset of KAT genes, including NAA10, KAT6A, and CREBBP, have high frequencies of genomic amplification or mutation in a spectrum of human cancers. Importantly, we found that 3 KATs, NAA10, ACAT2, and BRD4, were highly expressed in the aggressive basal-like subtype, and their expression was significantly associated with disease-free survival. Furthermore, we showed that depletion of NAA10 inhibits basal-like breast cancer growth in vitro. Our findings provide a strong foundation for further mechanistic research and for developing therapies that target NAA10 or other KATs in human cancer.


Subject(s)
Genome, Human/genetics , Lysine Acetyltransferases/genetics , Neoplasms/genetics , Neoplasms/pathology , Breast Neoplasms/classification , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , CREB-Binding Protein/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Disease-Free Survival , E1A-Associated p300 Protein/genetics , Gene Dosage , Gene Expression , Histone Acetyltransferases/genetics , Humans , Lysine Acetyltransferases/metabolism , Mutation , N-Terminal Acetyltransferase A/genetics , N-Terminal Acetyltransferase A/metabolism , N-Terminal Acetyltransferase E/genetics , N-Terminal Acetyltransferase E/metabolism , Neoplasms/mortality , Prognosis , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , Transcription Factors/genetics
6.
RNA Biol ; 17(4): 474-486, 2020 04.
Article in English | MEDLINE | ID: mdl-31957540

ABSTRACT

RNA methylation, catalysed by a set of RNA methyltransferases (RNMTs), modulates RNA structures, properties, and biological functions. RNMTs are increasingly documented to be dysregulated in various human diseases, particularly developmental disorders and cancer. However, the genomic and transcriptomic alterations of RNMTs, as well as their functional roles in human cancer, are limited. In this study, we utilized an unbiased approach to examine copy number alterations and mutation rates of 58 RNMTs in more than 10,000 clinical samples across 32 human cancer types. We also investigated these alterations and RNMT expression level as they related to clinical features such as tumour subtype, grade, and survival in a large cohort of tumour samples, focusing on breast cancer. Loss-of-function analysis was performed to examine RNMT candidates with important roles in growth and viability of breast cancer cells. We identified a subset of RNMTs, notably TRMT12, NSUN2, TARBP1, and FTSJ3, that were amplified or mutated in a subset of human cancers. Several RNMTs were significantly associated with breast cancer aggressiveness and poor prognosis. Loss-of-function analysis indicated FTSJ3, a 2'-O-Me methyltransferase, as a candidate RNMT with functional roles in promoting cancer growth and survival. A subset of RNMTs, like FTSJ3, represents promising novel targets for anticancer drug discovery. Our findings provide a framework for further study of the functional consequences of RNMT alterations in human cancer and for developing therapies that target cancer-promoting RNMTs in the future.


Subject(s)
Breast Neoplasms/genetics , Loss of Function Mutation , Methyltransferases/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival , Disease Progression , Female , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Prognosis
7.
BMC Cancer ; 19(1): 411, 2019 May 02.
Article in English | MEDLINE | ID: mdl-31046734

ABSTRACT

BACKGROUND: Autoantibodies function as markers of tumorigenesis and have been proposed to enhance early detection of malignancies. We recently reported, using immunoscreening of a T7 complementary DNA (cDNA) library of breast cancer (BC) proteins with sera from patients with BC, the presence of autoantibodies targeting several mitochondrial DNA (mtDNA)-encoded subunits of the electron transport chain (ETC) in complexes I, IV, and V. METHODS: In this study, we have characterized the role of Mitochondrial-Nuclear Retrograde Regulator 1 (MNRR1, also known as CHCHD2), identified on immunoscreening, in breast carcinogenesis. We assessed the protein as well as transcript levels of MNRR1 in BC tissues and in derived cell lines representing tumors of graded aggressiveness. Mitochondrial function was also assayed and correlated with the levels of MNRR1. We studied the invasiveness of BC derived cells and the effect of MNRR1 levels on expression of genes associated with cell proliferation and migration such as Rictor and PGC-1α. Finally, we manipulated levels of MNRR1 to assess its effect on mitochondria and on some properties linked to a metastatic phenotype. RESULTS: We identified a nuclear DNA (nDNA)-encoded mitochondrial protein, MNRR1, that was significantly associated with the diagnosis of invasive ductal carcinoma (IDC) of the breast by autoantigen microarray analysis. In focusing on the mechanism of action of MNRR1 we found that its level was nearly twice as high in malignant versus benign breast tissue and up to 18 times as high in BC cell lines compared to MCF10A control cells, suggesting a relationship to aggressive potential. Furthermore, MNRR1 affected levels of multiple genes previously associated with cancer metastasis. CONCLUSIONS: MNRR1 regulates multiple genes that function in cell migration and cancer metastasis and is higher in cell lines derived from aggressive tumors. Since MNRR1 was identified as an autoantigen in breast carcinogenesis, the present data support our proposal that both mitochondrial autoimmunity and MNRR1 activity in particular are involved in breast carcinogenesis. Virtually all other nuclear encoded genes identified on immunoscreening of invasive BC harbor an MNRR1 binding site in their promoters, thereby placing MNRR1 upstream and potentially making it a novel marker for BC metastasis.


Subject(s)
Breast Neoplasms/diagnosis , Carcinoma, Ductal, Breast/diagnosis , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Autoantigens/metabolism , Autoimmunity , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , DNA-Binding Proteins , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Mitochondria/genetics , Neoplasm Invasiveness , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Prospective Studies , Protein Array Analysis , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Up-Regulation
8.
Article in English | MEDLINE | ID: mdl-30254753

ABSTRACT

We previously reported that expression of an environmentally induced gene, mineral dust-induced gene (mdig), predicts overall survival in breast cancer patients. In the present report, we further demonstrate the differential roles of mdig between earlier- and later-stage breast cancers. In noncancerous breast, mdig is a proliferation factor for cell growth and cell motility. In breast cancer, however, higher levels of mdig negatively regulate the migration and invasion of cancer cells. Assessment of global DNA methylation, chromatin accessibility and H3K9me3 heterochromatin signature suggests that silencing mdig enhances DNA and histone methylation. Through immunostaining and data mining, we found that mdig is significantly upregulated in noninvasive and/or earlier-stage breast cancers. In contrast, in triple-negative and other invasive breast cancers, diminished mdig expression was noted, indicating that the loss of mdig expression could be an important feature of aggressive breast cancers. Taken together, our data suggest that mdig is a new biomarker that likely promotes tumor growth in the early stages of breast cancer while acting as a tumor suppressor to inhibit invasion and metastasis in later-stage tumors.

9.
Mol Oncol ; 11(10): 1348-1360, 2017 10.
Article in English | MEDLINE | ID: mdl-28649742

ABSTRACT

Chromodomain helicase DNA binding proteins (CHDs) are characterized by N-terminal tandem chromodomains and a central adenosine triphosphate-dependent helicase domain. CHDs govern the cellular machinery's access to DNA, thereby playing critical roles in various cellular processes including transcription, proliferation, and DNA damage repair. Accumulating evidence demonstrates that mutation and dysregulation of CHDs are implicated in the pathogenesis of developmental disorders and cancer. However, we know little about genomic and transcriptomic alterations and the clinical significance of most CHDs in human cancer. We used TCGA and METABRIC datasets to perform integrated genomic and transcriptomic analyses of nine CHD genes in more than 10 000 primary cancer specimens from 32 tumor types, focusing on breast cancers. We identified associations among recurrent copy number alteration, gene expression, clinicopathological features, and patient survival. We found that CHD7 was the most commonly gained/amplified and mutated, whereas CHD3 was the most deleted across the majority of tumor types, including breast cancer. Overexpression of CHD7 was more prevalent in aggressive subtypes of breast cancer and was significantly correlated with high tumor grade and poor prognosis. CHD7 is required to maintain open, accessible chromatin, thus providing fine-tuning of transcriptional regulation of certain classes of genes. We found that CHD7 expression was positively correlated with a small subset of classical oncogenes, notably NRAS, in breast cancer. Knockdown of CHD7 inhibits cell proliferation and decreases gene expression of several CHD7 targets, including NRAS, in breast cancer cell lines. Thus, our results demonstrate the oncogenic potential of CHD7 and its association with poor prognostic parameters in human cancer.


Subject(s)
DNA Helicases/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Mutation , Neoplasms/genetics , Transcriptome , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Gene Dosage , Genomics , Humans , Male , Neoplasms/pathology , Oncogenes , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology
10.
Oncotarget ; 8(8): 13099-13115, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28055972

ABSTRACT

A wide range of the epigenetic effectors that regulate chromatin modification, gene expression, genomic stability, and DNA repair contain structurally conserved domains called plant homeodomain (PHD) fingers. Alternations of several PHD finger-containing proteins (PHFs) due to genomic amplification, mutations, deletions, and translocations have been linked directly to various types of cancer. However, little is known about the genomic landscape and the clinical significance of PHFs in breast cancer. Hence, we performed a large-scale genomic and transcriptomic analysis of 98 PHF genes in breast cancer using TCGA and METABRIC datasets and correlated the recurrent alterations with clinicopathological features and survival of patients. Different subtypes of breast cancer had different patterns of copy number and expression for each PHF. We identified a subset of PHF genes that was recurrently altered with high prevalence, including PYGO2 (pygopus family PHD finger 2), ZMYND8 (zinc finger, MYND-type containing 8), ASXL1 (additional sex combs like 1) and CHD3 (chromodomain helicase DNA binding protein 3). Copy number increase and overexpression of ZMYND8 were more prevalent in Luminal B subtypes and were significantly associated with shorter survival of breast cancer patients. ZMYND8 was also involved in a positive feedback circuit of the estrogen receptor (ER) pathway, and the expression of ZMYND8 was repressed by the bromodomain and extra terminal (BET) inhibitor in breast cancer. Our findings suggest a promising avenue for future research-to focus on a subset of PHFs to better understand the molecular mechanisms and to identify therapeutic targets in breast cancer.


Subject(s)
Breast Neoplasms/genetics , DNA Copy Number Variations , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Genomics/methods , Breast Neoplasms/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Immunoblotting , Kaplan-Meier Estimate , Phylogeny , Prognosis , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Oncotarget ; 8(68): 112875-112882, 2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29348873

ABSTRACT

TGF-ß-inducible early gene 1 (TIEG1), also known as Krüppel-like factor 10 (Klf10), represents a major downstream transcription factor of transforming growth factor-ß1 (TGF-ß1) signaling. Epidermal Langerhans cells (LCs), a unique subpopulation of dendritic cells (DC), essentially mediates immune surveillance and tolerance. TGF-ß1 plays a pivotal role in LC maintenance and function after birth, although the underpinning mechanisms remain elusive. Here, we hypothesized that TIEG1 might be involved in TGF-ß1-mediated LC homeostasis and function. Utilizing TIEG1 null mice, we discovered that TIEG1 deficiency did not alter LC homeostasis at the steady state and LC repopulation at inflamed-state, as well as their antigen-uptake capacity, but significantly impaired their maturation ability, which was opposite to the fact that loss of TGF-ß1 induced spontaneous LC maturation. Moreover, the ablation of TIEG1 enhanced skin contact hypersensitivity response. Our results suggested that TIEG1 is not a key molecule involved in TGF-ß1-mediated homeostasis, while TIEG1-related signaling pathways regulate LC maturation and their function.

12.
Diabetes ; 66(1): 177-192, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27634225

ABSTRACT

Diabetic skin ulcers represent a challenging clinical problem with mechanisms not fully understood. In this study, we investigated the role and mechanism for the primary unfolded protein response (UPR) transducer inositol-requiring enzyme 1 (IRE1α) in diabetic wound healing. Bone marrow-derived progenitor cells (BMPCs) were isolated from adult male type 2 diabetic and their littermate control mice. In diabetic BMPCs, IRE1α protein expression and phosphorylation were repressed. The impaired diabetic BMPC angiogenic function was rescued by adenovirus-mediated expression of IRE1α but not by the RNase-inactive IRE1α or the activated X-box binding protein 1 (XBP1), the canonical IRE1α target. In fact, IRE1α RNase processes a subset of microRNAs (miRs), including miR-466 and miR-200 families, through which IRE1α plays an important role in maintaining BMPC function under the diabetic condition. IRE1α attenuated maturation of miR-466 and miR-200 family members at precursor miR levels through the regulated IRE1α-dependent decay (RIDD) independent of XBP1. IRE1α deficiency in diabetes resulted in a burst of functional miRs from miR-466 and miR-200 families, which directly target and repress the mRNA encoding the angiogenic factor angiopoietin 1 (ANGPT1), leading to decreased ANGPT1 expression and disrupted angiogenesis. Importantly, cell therapies using IRE1α-expressing BMPCs or direct IRE1α gene transfer significantly accelerated cutaneous wound healing in diabetic mice through facilitating angiogenesis. In conclusion, our studies revealed a novel mechanistic basis for rescuing angiogenesis and tissue repair in diabetic wound treatments.


Subject(s)
Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Membrane Proteins/metabolism , MicroRNAs/genetics , Protein Serine-Threonine Kinases/metabolism , 3' Untranslated Regions/genetics , Angiopoietin-1/genetics , Angiopoietin-1/metabolism , Animals , Blotting, Western , Cell- and Tissue-Based Therapy , Diabetes Mellitus, Experimental/therapy , Electrophoresis, Polyacrylamide Gel , Female , Male , Membrane Proteins/genetics , Mice , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Real-Time Polymerase Chain Reaction , Wound Healing/genetics , Wound Healing/physiology , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
13.
Sci Rep ; 6: 31742, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27550821

ABSTRACT

Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, plays a key role in regulating mitochondrial energy production and cell survival. COX subunit VIIa polypeptide 2-like protein (COX7AR) is a novel COX subunit that was recently found to be involved in mitochondrial supercomplex assembly and mitochondrial respiration activity. Here, we report that COX7AR is expressed in high energy-demanding tissues, such as brain, heart, liver, and aggressive forms of human breast cancer cells. Under cellular stress that stimulates energy metabolism, COX7AR is induced and incorporated into the mitochondrial COX complex. Functionally, COX7AR promotes cellular energy production in human mammary epithelial cells. Gain- and loss-of-function analysis demonstrates that COX7AR is required for human breast cancer cells to maintain higher rates of proliferation, clone formation, and invasion. In summary, our study revealed that COX7AR is a stress-inducible mitochondrial COX subunit that facilitates human breast cancer malignancy. These findings have important implications in the understanding and treatment of human breast cancer and the diseases associated with mitochondrial energy metabolism.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/chemistry , Animals , CHO Cells , Cell Line, Tumor , Cell Proliferation , Cricetinae , Cricetulus , Energy Metabolism , Female , Fibroblasts/metabolism , Fluorescent Antibody Technique, Indirect , HEK293 Cells , Humans , Mice , Mitochondrial Membranes/metabolism , Neoplasm Invasiveness , Oligonucleotide Array Sequence Analysis , RNA, Small Interfering , Tissue Distribution
14.
Mol Pharm ; 13(8): 2605-21, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27223606

ABSTRACT

Basal-like breast cancer (BLBC) accounts for the most aggressive types of breast cancer, marked by high rates of relapse and poor prognoses and with no effective clinical therapy yet. Therefore, investigation of new targets and treatment strategies is more than necessary. Here, we identified a receptor that can be targeted in BLBC for efficient and specific siRNA mediated gene knockdown of therapeutically relevant genes such as the histone demethylase GASC1, which is involved in multiple signaling pathways leading to tumorigenesis. Breast cancer and healthy breast cell lines were compared regarding transferrin receptor (TfR) expression via flow cytometry and transferrin binding assays. Nanobioconjugates made of low molecular weight polyethylenimine (LMW-PEI) and transferrin (Tf) were synthesized to contain a bioreducible disulfide bond. siRNA complexation was characterized by condensation assays and dynamic light scattering. Cytotoxicity, transfection efficiency, and the targeting specificity of the conjugates were investigated in TfR positive and negative healthy breast and breast cancer cell lines by flow cytometry, confocal microscopy, RT-PCR, and Western blot. Breast cancer cell lines revealed a significantly higher TfR expression than healthy breast cells. The conjugates efficiently condensed siRNA into particles with 45 nm size at low polymer concentrations, showed no apparent toxicity on different breast cancer cell lines, and had significantly greater transfection and gene knockdown activity on mRNA and protein levels than PEI/siRNA leading to targeted and therapeutic growth inhibition post GASC1 knockdown. The synthesized nanobioconjugates improved the efficiency of gene transfer and targeting specificity in transferrin receptor positive cells but not in cells with basal receptor expression. Therefore, these materials in combination with our newly identified siRNA sequences are promising candidates for therapeutic targeting of hard-to-treat BLBC and are currently further investigated regarding in vivo targeting efficacy and biocompatibility.


Subject(s)
Gene Expression Regulation/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Nanoparticles/chemistry , RNA, Small Interfering/genetics , Blotting, Western , Cell Line, Tumor , Cell Proliferation/genetics , Cell Proliferation/physiology , Female , Flow Cytometry , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Microscopy, Atomic Force , Microscopy, Confocal , Polymers/chemistry , Receptors, Transferrin/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transferrin/metabolism
15.
Mol Oncol ; 10(2): 292-302, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26588862

ABSTRACT

Tudor domain-containing proteins (TDRDs), which recognize and bind to methyl-lysine/arginine residues on histones and non-histone proteins, play critical roles in regulating chromatin architecture, transcription, genomic stability, and RNA metabolism. Dysregulation of several TDRDs have been observed in various types of cancer. However, neither the genomic landscape nor clinical significance of TDRDs in breast cancer has been explored comprehensively. Here, we performed an integrated genomic and transcriptomic analysis of 41 TDRD genes in breast cancer (TCGA and METABRIC datasets) and identified associations among recurrent copy number alterations, gene expressions, clinicopathological features, and survival of patients. Among seven TDRDs that had the highest frequency (>10%) of gene amplification, the plant homeodomain finger protein 20-like 1 (PHF20L1) was the most commonly amplified (17.62%) TDRD gene in TCGA breast cancers. Different subtypes of breast cancer had different patterns of copy number and expression for each TDRD. Notably, amplification and overexpression of PHF20L1 were more prevalent in aggressive basal-like and Luminal B subtypes and were significantly associated with shorter survival of breast cancer patients. Furthermore, knockdown of PHF20L1 inhibited cell proliferation in PHF20L1-amplified breast cancer cell lines. PHF20L1 protein contains N-terminal Tudor and C-terminal plant homeodomain domains. Detailed characterization of PHF20L1 in breast cancer revealed that the Tudor domain likely plays a critical role in promoting cancer. Mechanistically, PHF20L1 might participate in regulating DNA methylation by stabilizing DNA methyltransferase 1 (DNMT1) protein in breast cancer. Thus, our results demonstrated the oncogenic potential of PHF20L1 and its association with poor prognostic parameters in breast cancer.


Subject(s)
Breast Neoplasms/genetics , Chromosomal Proteins, Non-Histone/genetics , Genomics , Oncogenes , Cell Line, Tumor , Cell Proliferation , Chromosomal Proteins, Non-Histone/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Datasets as Topic , Female , Gene Amplification , Gene Expression Profiling , Gene Knockdown Techniques , Histones/metabolism , Humans , Prognosis , Protein Structure, Tertiary , RNA, Small Interfering/genetics
16.
Mol Carcinog ; 55(5): 977-90, 2016 May.
Article in English | MEDLINE | ID: mdl-26207617

ABSTRACT

Histone lysine demethylases (KDMs) comprise a large class of enzymes that catalyze site-specific demethylation of lysine residues on histones and other proteins. They play critical roles in controlling transcription, chromatin architecture, and cellular differentiation. However, the genomic landscape and clinical significance of KDMs in breast cancer remain poorly characterized. Here, we conducted a meta-analysis of 24 KDMs in breast cancer and identified associations among recurrent copy number alterations, gene expression, breast cancer subtypes, and clinical outcome. Two KDMs, KDM2A and KDM5B, had the highest frequency of genetic amplification and overexpression. Furthermore, among the 24 KDM genes, KDM2A had the highest correlation between copy number and mRNA expression, and high mRNA levels of KDM2A were significantly associated with shorter survival of breast cancer patients. KDM2A has two isoforms: the long isoform is comprised of a JmjC domain, CXXC-zinc finger, PHD zinc finger, F-box, and the AMN1 protein domain; whereas the short isoform of KDM2A lacks the N-terminal JmjC domain but contains all other motifs. Detailed characterization of KDM2A in breast cancer revealed that the short isoform of KDM2A is more abundant than the long isoform at DNA, mRNA, and protein levels in a subset of breast cancers. Furthermore, our data indicate that the short isoform of KDM2A has oncogenic potential and functions as an oncogenic isoform in a subset of breast cancers. Taken together, our findings suggest that amplification and overexpression of the KDM2A short isoform is critical in breast cancer progression.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , F-Box Proteins/genetics , F-Box Proteins/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Female , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , Survival Analysis
17.
Fly (Austin) ; 9(1): 36-44, 2015.
Article in English | MEDLINE | ID: mdl-26207949

ABSTRACT

Epigenetic regulation of chromatin structure is a fundamental process for eukaryotes. Regulators include DNA methylation, microRNAs and chromatin modifications. Within the chromatin modifiers, one class of enzymes that can functionally bind and modify chromatin, through the removal of methyl marks, is the histone lysine demethylases. Here, we summarize the current findings of the 13 known histone lysine demethylases in Drosophila melanogaster, and discuss the critical role of these histone-modifying enzymes in the maintenance of genomic functions. Additionally, as histone demethylase dysregulation has been identified in cancer, we discuss the advantages for using Drosophila as a model system to study tumorigenesis.


Subject(s)
Drosophila melanogaster/enzymology , Histone Demethylases/metabolism , Animals , Carcinogenesis , Disease Models, Animal , Jumonji Domain-Containing Histone Demethylases/metabolism , Neoplasms/enzymology
18.
Am J Cancer Res ; 5(4): 1519-30, 2015.
Article in English | MEDLINE | ID: mdl-26101715

ABSTRACT

The histone lysine demethylase KDM4 subfamily, comprised of four members (A, B, C, and D), play critical roles in controlling transcription, chromatin architecture and cellular differentiation. We previously demonstrated that KDM4C is significantly amplified and overexpressed in aggressive basal-like breast cancers and functions as a transforming oncogene. However, information regarding the genomic and transcriptomic alterations of the KDM4 subfamily in different subtypes of breast cancer remains largely incomplete. Here, we conducted a meta-analysis of KDM4A, B, C and D in breast cancer and identified associations among recurrent copy number alterations, gene expression and breast cancer subtypes. We demonstrated that KDM4A and D are also significantly overexpressed in basal-like breast cancer, whereas KDM4B overexpression is more dominant in estrogen-receptor-positive, luminal breast cancer. Next, we investigated the therapeutic potential of a novel histone demethylase inhibitor, NCDM-32B, in breast cancer. The treatment of basal breast cancer cell lines with NCDM-32B resulted in the decrease of cell viability and anchorage independent growth in soft agar. Furthermore, we found that NCDM-32B impaired several critical pathways that drive cellular proliferation and transformation in breast cancer. Our findings demonstrate genetic amplification and overexpression of the KDM4 demethylases in different subtypes of breast cancer. Furthermore, histone methylation is reversible and KDM4 demethylases are druggable targets. Thus, KDM4 inhibitors may serve as a novel therapeutic approach for a subset of aggressive breast cancer.

19.
Cell Discov ; 1: 15024, 2015.
Article in English | MEDLINE | ID: mdl-27462423

ABSTRACT

The gene encoding endoplasmic reticulum (ER) lipid raft-associated protein 2 (ERLIN2) is amplified in human breast cancers. ERLIN2 gene mutations were also found to be associated with human childhood progressive motor neuron diseases. Yet, an understanding of the physiological function and mechanism for ERLIN2 remains elusive. In this study, we reveal that ERLIN2 is a spatially and temporally regulated ER-microtubule-binding protein that has an important role in cell cycle progression by interacting with and stabilizing the mitosis-promoting factors. Whereas ERLIN2 is highly expressed in aggressive human breast cancers, during normal development ERLIN2 is expressed at the postnatal stage and becomes undetectable in adulthood. ERLIN2 interacts with the microtubule component α-tubulin, and this interaction is maximal during the cell cycle G2/M phase where ERLIN2 simultaneously interacts with the mitosis-promoting complex Cyclin B1/Cdk1. ERLIN2 facilitates K63-linked ubiquitination and stabilization of Cyclin B1 protein in G2/M phase. Downregulation of ERLIN2 results in cell cycle arrest, represses breast cancer proliferation and malignancy and increases sensitivity of breast cancer cells to anticancer drugs. In summary, our study revealed a novel ER-microtubule-binding protein, ERLIN2, which interacts with and stabilizes mitosis-promoting factors to regulate cell cycle progression associated with human breast cancer malignancy.

20.
Oncotarget ; 6(4): 2466-82, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25537518

ABSTRACT

Histone lysine methyltransferases (HMTs), a large class of enzymes that catalyze site-specific methylation of lysine residues on histones and other proteins, play critical roles in controlling transcription, chromatin architecture, and cellular differentiation. However, the genomic landscape and clinical significance of HMTs in breast cancer remain poorly characterized. Here, we conducted a meta-analysis of approximately 50 HMTs in breast cancer and identified associations among recurrent copy number alterations, mutations, gene expression, and clinical outcome. We identified 12 HMTs with the highest frequency of genetic alterations, including 8 with high-level amplification, 2 with putative homozygous deletion, and 2 with somatic mutation. Different subtypes of breast cancer have different patterns of copy number and expression for each HMT gene. In addition, chromosome 1q contains four HMTs that are concurrently or independently amplified or overexpressed in breast cancer. Copy number or mRNA expression of several HMTs was significantly associated with basal-like breast cancer and shorter patient survival. Integrative analysis identified 8 HMTs (SETDB1, SMYD3, ASH1L, SMYD2, WHSC1L1, SUV420H1, SETDB2, and KMT2C) that are dysregulated by genetic alterations, classifying them as candidate therapeutic targets. Together, our findings provide a strong foundation for further mechanistic research and therapeutic options using HMTs to treat breast cancer.


Subject(s)
Breast Neoplasms/genetics , DNA Copy Number Variations , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/genetics , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Gene Frequency , Histone-Lysine N-Methyltransferase/classification , Histone-Lysine N-Methyltransferase/metabolism , Humans , Isoenzymes/classification , Isoenzymes/genetics , Isoenzymes/metabolism , Kaplan-Meier Estimate , Mutation , Phylogeny , Prognosis , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...