Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Surg ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967516

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the effects of interleukin-1ß (IL-1ß) stimulation on the protection of macrophage derived exosomes miR-146a (M-IL-exo-146a) on sepsis induced myocardial injury (SMI) in vitro and in vivo. METHODS: Macrophage derived exosomes (M-exo) and IL-1ß stimulated macrophage exosomes (M-IL-exo) were isolated from macrophages of sepsis with or without IL-1ß. The expressions of miR-146a in M-exo and M- IL-exo were detected by fluorescence quantitative PCR. Related molecular biology technologies were used to evaluate the role and mechanism of M-exo-146a and M-IL-exo-146a on SMI and the enhancing effect of IL-1ß. RESULTS: Compared with M-exo, the expression of miR-146a in M-IL-exo was significantly increased. M-IL-exo-146a significantly alleviated SMI by decreasing the level of serum myocardial enzymes, serum and myocardial oxidative stress and cytokines, and improved myocardial mitochondrial imbalance. The mechanism responsible for IL-1ß enhancing the production of IL-M-exo miR-146a was via JNK-1/2 signal pathway. The mechanism responsible for M-exo-IL-miR-146a protecting SMI was related to miR-146a inhibiting inflammatory response and mitochondrial function via MAPK4/Drp1 signal pathway. CONCLUSIONS: This study provides a new strategy for the treatment of SMI by delivering IL-1ß stimulated macrophage derived exosomes.

2.
Int J Surg ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959095

ABSTRACT

BACKGROUND: Non-malignant upper gastrointestinal diseases, including peptic ulcer disease (PUD), gastritis and duodenitis (GD), and gastroesophageal reflux disease (GERD), significantly challenge global healthcare. These conditions not only impact patient health but also highlight socio-economic development issues and healthcare system accessibility and efficiency. Utilizing the Global Burden of Disease (GBD) database, this study aims to assess the global burden of PUD, GD, and GERD comprehensively, examining their association with the sociodemographic index (SDI). METHODS: Employing data from the GBD 2019 database, this study analyzed the disability-adjusted life years (DALYs) for PUD, GD, and GERD. We integrated the SDI with the inequality slope index and concentration index for an international health inequality analysis, assessing disparities in the burden of these non-malignant upper gastrointestinal diseases. Decomposition analysis was conducted to determine the effects of population growth, aging, and epidemiological shifts on disease burden. Frontier analysis was performed to identify potential improvement areas and disparities among countries by development status. Disease time trends were depicted using a Joinpoint regression model, and the Bayesian age-period-cohort (BAPC) model projected the disease burden up to 2030. RESULTS: Between 1990 and 2019, the age-standardized DALYs rates (ASDR) for non-malignant upper gastrointestinal diseases declined. However, global geographic heterogeneity remained evident, closely linked to the SDI. Notably, low-SDI countries experienced higher disease burdens. Population growth and aging emerged as principal contributors to the increasing disease burden. Despite development levels, many countries have considerable potential for reducing the burden of these diseases. Furthermore, significant variations in the time trends of non-malignant upper gastrointestinal diseases were observed among countries and regions with different SDI levels, a pattern expected to continue through 2030. CONCLUSION: Non-malignant upper gastrointestinal diseases demonstrate notable heterogeneity across age, gender, and geography, with the disparities most marked in underdeveloped regions or countries. Consequently, it is imperative to focus research on policy development and to enact prevention and treatment strategies tailored to high-risk groups. This targeted approach is essential for mitigating the disease burden effectively.

4.
Phytomedicine ; 128: 155438, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537443

ABSTRACT

BACKGROUND: Yi-Qi-Huo-Xue Decoction (YQHXD), a traditional Chinese medicine formula, has demonstrated efficacy in the clinical treatment of intracerebral hemorrhage (ICH) for over a decade. Nevertheless, the precise pharmacotherapeutic compounds of YQHXD capable of penetrating into cerebral tissue and the pharmacological underpinnings of YQHXD remain ambiguous. METHODS: The active components of YQHXD in rat brains was analyzed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The potential targets, pathways and biological progresses of YQHXD ameliorating ICH induced injury was predicted by network pharmacology. Moreover, collagenase-induced ICH rat model, primary cortex neurons exposed to hemin and molecular docking were applied to validate the molecular mechanisms of YQHXD. RESULTS: Eleven active components of YQHXD were identified within the brains. Employing the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, our investigation concentrated on the roles of autophagy and the BDNF/TrkB signaling pathway in the pharmacological context. The pharmacological results revealed that YQHXD alleviated neurological dysfunction, brain water content, brain swelling, and pathological injury caused by ICH. Meanwhile, YQHXD inhibited autophagy influx and autophagosome in vivo, and regulated cortex neuronal autophagy and TrkB/BDNF pathway both in vivo and in vitro. Subsequently, N-acetyl serotonin (NAS), a selective TrkB agonist, was employed to corroborate the significance of the BDNF/TrkB pathway in this process. The combination of NAS and YQHXD did not further enhance the protective efficacy of YQHXD in ICH rats. Additionally, outcomes of molecular docking analysis revealed that nine compounds of YQHXD exhibited potential regulatory effects on TrkB. CONCLUSIONS: Ipsilateral neuronal autophagy and BDNF/TrkB pathway were activated 72 h after ICH. YQHXD effectively resisted injury induced by ICH, which was related with suppression of ipsilateral neuronal autophagy via BDNF/TrkB pathway. This study provides novel insights into the therapeutic mechanisms of traditional Chinese medicine in the context of ICH treatment.


Subject(s)
Autophagy , Brain-Derived Neurotrophic Factor , Cerebral Hemorrhage , Drugs, Chinese Herbal , Molecular Docking Simulation , Neurons , Rats, Sprague-Dawley , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cerebral Hemorrhage/drug therapy , Drugs, Chinese Herbal/pharmacology , Autophagy/drug effects , Male , Neurons/drug effects , Rats , Signal Transduction/drug effects , Receptor, trkB/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Disease Models, Animal , Neuroprotective Agents/pharmacology
5.
NPJ Biofilms Microbiomes ; 10(1): 32, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553470

ABSTRACT

Alteration of gut microbiota can affect chronic lung diseases, such as asthma and chronic obstructive pulmonary disease, through abnormal immune and inflammatory responses. Previous studies have shown a feasible connection between gut microbiota and bronchopulmonary dysplasia (BPD) in preterm infants. However, whether BPD can be ameliorated by restoring the gut microbiota remains unclear. In preterm infants with BPD, we found variance in the diversity and structure of gut microbiota. Similarly, BPD rats showed gut dysbiosis, characterized by a deficiency of Lactobacillus, which was abundant in normal rats. We therefore explored the effect and potential mechanism of action of a probiotic strain, Lactobacillus plantarum L168, in improving BPD. The BPD rats were treated with L. plantarum L168 by gavage for 2 weeks, and the effect was evaluated by lung histopathology, lung function, and serum inflammatory markers. Subsequently, we observed reduced lung injury and improved lung development in BPD rats exposed to L. plantarum L168. Further evaluation revealed that L. plantarum L168 improved intestinal permeability in BPD rats. Serum metabolomics showed altered inflammation-associated metabolites following L. plantarum L168 intervention, notably a marked increase in anti-inflammatory metabolites. In agreement with the metabolites analysis, RNA-seq analysis of the intestine and lung showed that inflammation and immune-related genes were down-regulated. Based on the information from RNA-seq, we validated that L. plantarum L168 might improve BPD relating to down-regulation of TLR4 /NF-κB /CCL4 pathway. Together, our findings suggest the potential of L. plantarum L168 to provide probiotic-based therapeutic strategies for BPD.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Lactobacillus plantarum , Pneumonia , Humans , Infant, Newborn , Animals , Rats , Bronchopulmonary Dysplasia/drug therapy , Bronchopulmonary Dysplasia/etiology , Hyperoxia/complications , Hyperoxia/metabolism , Infant, Premature , Inflammation/drug therapy , Inflammation/metabolism , Biomarkers
6.
Int J Surg ; 110(4): 1992-2006, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38277348

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the effects of cardiac homing peptide (CHP) engineered bone marrow mesenchymal stem cells (BMMSc) derived exosomes (B-exo) loaded miRNA-499a-5p on doxorubicin (DOX) induced cardiotoxicity. METHODS: miRNA chip analysis was used to analyze the differences between DOX induced H9c2 cells and control group. CHP engineering was performed on BMMSc derived exosomes to obtain C-B-exo. miRNA-499a-5p mimic was introduced into C-B-exo by electroporation technology to obtain C-B-exo-miRNA-499a-5p. DOX was used to establish a model of cardiotoxicity to evaluate the effects of C-B-exo- miRNA-499a-5p in vivo and in vitro . Western blot, immunohistochemistry, immunofluorescence, and other molecular biology methods were used to evaluate the role and mechanism of C-B-exo-miRNA-499a-5p on DOX induced cardiotoxicity. RESULTS: miRNA chip analysis revealed that miRNA-499a-5p was one of the most differentially expressed miRNAs and significantly decreased in DOX induced H9c2 cells as compared to the control group. Exo-and B-exo have a double-layer membrane structure in the shape of a saucer. After engineering the CHP of B-exo, the results showed that the delivery of miRNA-499a-5p significantly increased and significantly reached the target organ (heart). The experimental results showed that C-B-exo-miRNA-499a-5p significantly improved electrocardiogram, decreased myocardial enzyme, serum and cardiac cytokines, improved cardiac pathological changes, inhibited CD38/MAPK/NF-κB signal pathway. CONCLUSIONS: In this study, C-B-exo-miRNA-499a-5p significantly improved DOX-induced cardiotoxicity via CD38/MAPK/NF-κB signal pathway, providing a new idea and method for the treatment of DOX induced cardiotoxicity.


Subject(s)
Cardiotoxicity , Doxorubicin , Exosomes , MicroRNAs , MicroRNAs/metabolism , MicroRNAs/genetics , Exosomes/metabolism , Exosomes/drug effects , Animals , Cardiotoxicity/prevention & control , Doxorubicin/administration & dosage , Doxorubicin/adverse effects , Rats , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Male , Disease Models, Animal
7.
Int Immunopharmacol ; 124(Pt B): 110275, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37741127

ABSTRACT

The purpose of the present study was to search for biomarker and effective treatment measures for septic hepatitis. Lipopolysaccharide (LPS) was used to establish septic hepatitis (SH) model in vivo and in vitro. Proteomics, immunoprecipitation, molecular docking techniques, and CARD9 knockout (KO) mice and silence Chang liver Cell(CLC) were used to search for biomarker and possible treatment targets and treatment measures for SH. 46 differentially expressed proteins were found in the liver tissues of sepsis mice, among which CARD9 changed most. CARD9 KO and silence significantly relieved sepsis induced SH in vivo and in vitro. Tiliroside (TIS), an effective component of Buddleja officinalis Maxim, significantly improved SH by regulating CARD9 mediated MAPK/NF-κB signal pathway. In conclusion, CARD9 may be the important molecular targets for SH. TIS could protect SH via CARD9 mediated MAPK/NF-κB signal pathway. The findings provide a new treatment target for SH and a potential treatment measure.


Subject(s)
Hepatitis , Sepsis , Mice , Animals , NF-kappa B/metabolism , Molecular Docking Simulation , Signal Transduction , CARD Signaling Adaptor Proteins/metabolism , Biomarkers , Sepsis/drug therapy , Sepsis/metabolism
8.
Cryobiology ; 112: 104544, 2023 09.
Article in English | MEDLINE | ID: mdl-37211323

ABSTRACT

Mild hypothermia is proven neuroprotective in clinical practice. While hypothermia leads to the decrease of global protein synthesis rate, it upregulates a small subset of protein including RNA-binding motif protein 3 (RBM3). In this study, we treated mouse neuroblastoma cells (N2a) with mild hypothermia before oxygen-glucose deprivation/reoxygenation (OGD/R) and discovered the decrease of apoptosis rate, down-regulation of apoptosis-associated protein and enhancement of cell viability. Overexpression of RBM3 via plasmid exerted similar effect while silencing RBM3 by siRNAs partially reversed the protective effect exerted by mild hypothermia pretreatment. The protein level of Reticulon 3(RTN3), a downstream gene of RBM3, also increased after mild hypothermia pretreatment. Silencing RTN3 weakened the protective effect of mild hypothermia pretreatment or RBM3 overexpression. Also, the protein level of autophagy gene LC3B increased after OGD/R or RBM3 overexpression while silencing RTN3 decreased this trend. Furthermore, immunofluorescence observed enhanced fluorescence signal of LC3B and RTN3 as well as a large number of overlaps after RBM3 overexpressing. In conclusion, RBM3 plays a cellular protective role by regulating apoptosis and viability via its downstream gene RTN3 in the hypothermia OGD/R cell model and autophagy may participate in it.


Subject(s)
Hypothermia , Animals , Mice , Apoptosis , Cryopreservation/methods , Glucose , Hypothermia/genetics , Hypothermia/metabolism , Oxygen/metabolism , RNA-Binding Motifs , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
9.
IEEE Trans Vis Comput Graph ; 28(1): 912-921, 2022 01.
Article in English | MEDLINE | ID: mdl-34587084

ABSTRACT

Earth scientists are increasingly employing time series data with multiple dimensions and high temporal resolution to study the impacts of climate and environmental changes on Earth's atmosphere, biosphere, hydrosphere, and lithosphere. However, the large number of variables and varying time scales of antecedent conditions contributing to natural phenomena hinder scientists from completing more than the most basic analyses. In this paper, we present EVis (Environmental Visualization), a new visual analytics prototype to help scientists analyze and explore recurring environmental events (e.g. rock fracture, landslides, heat waves, floods) and their relationships with high dimensional time series of continuous numeric environmental variables, such as ambient temperature and precipitation. EVis provides coordinated scatterplots, heatmaps, histograms, and RadViz for foundational analyses. These features allow users to interactively examine relationships between events and one, two, three, or more environmental variables. EVis also provides a novel visual analytics approach to allowing users to discover temporally lagging relationships related to antecedent conditions between events and multiple variables, a critical task in Earth sciences. In particular, this latter approach projects multivariate time series onto trajectories in a 2D space using RadViz, and clusters the trajectories for temporal pattern discovery. Our case studies with rock cracking data and interviews with domain experts from a range of sub-disciplines within Earth sciences illustrate the extensive applicability and usefulness of EVis.

10.
World J Pediatr ; 17(5): 517-526, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34468958

ABSTRACT

BACKGROUND: Vitamin E is the most abundant lipid-soluble antioxidants present in plasma; however, the relationship between serum vitamin E and change in body mass index (BMI)-for-age Z scores in adolescents has not been well described. METHODS: This study is a cross-sectional study. Data were analyzed from 4014 adolescents who participated in the National Health and Nutrition Examination Survey. The nutritional status was calculated by BMI Z scores and was classified into normal weight, overweight, and obese. Multivariable-adjusted logistic regression was used to examine the association between serum vitamin E levels with overweight/obesity. Besides, the interaction effects between potential confounders and vitamin E on obesity were further evaluated. RESULTS: After adjusting potential confounders, serum vitamin E levels were negatively associated with overweight/obesity in girls but not in boys. Per standard deviation increment in vitamin E concentrations was associated with a 92% decreased risk of obesity in females. Besides, lower quartiles of serum vitamin E were associated with a higher risk of overweight/obesity in girls. Moreover, the inverse association between serum vitamin E levels and obesity was also found in most subgroups through subgroup analysis. CONCLUSIONS: Our study supports the negative association between serum vitamin E levels and overweight/obesity in adolescents. A higher serum vitamin E level may be associated with a reduced probability of obesity in girls, but not in boys.


Subject(s)
Overweight , Vitamin E , Adolescent , Body Mass Index , Cross-Sectional Studies , Female , Humans , Male , Nutrition Surveys , Overweight/epidemiology
11.
Biomed Res Int ; 2021: 2252705, 2021.
Article in English | MEDLINE | ID: mdl-34368345

ABSTRACT

To observe the effects of luteolin on galactosamine (D-Gal)/lipopolysaccharide (LPS) induced liver injury in mice. Male C57BL/6 mice were randomly divided into 4 groups: normal control group, D-GaI/LPS group, D-GaI/LPS + luteolin (Lu, 20 mg/kg), and D-GaI/LPS + luteolin (Lu, 40 mg/kg). Mice in the normal control group and D-GaI/LPS group were given distilled water while other groups were given drugs in 7 days by gavage. 4 hours after the continuous administration, Gal (700 mg/kg) and LPS (10 mg/kg) were injected intraperitoneally. Mice in the normal control group were given the same volume of vegetable oil solution. 24 h after the establishment of the mice model, blood and liver samples were collected. Hematoxylin (HE) staining was used to observe the changes of hepatic histopathology. Alanine aminotransferase (ALT) and glutamic oxalacetic transaminase (AST) in serum, interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor (TNF-α) were measured by related kits. Western blotting was used to demonstrate the expression levels of related inflammation proteins. Lu significantly reduced levels of proinflammatory cytokines including interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) in serum and liver. Lu restored the pathological changes after galactosamine (D-Gal)/lipopolysaccharide (LPS) treatment. In addition, Lu regulated proteins levels of the NLRP3/NF-κB pathway in liver. Lu exhibited therapeutical effects on D-GaI/LPS induced liver injury in mice which might be related to the regulation of the NLRP3/NF-κB pathway.


Subject(s)
Liver/injuries , Liver/pathology , Luteolin/pharmacology , Protective Agents/pharmacology , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Cytokines/blood , Galactosamine , Lipopolysaccharides , Liver/drug effects , Liver/enzymology , Male , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Transcription Factor RelA/metabolism
12.
Front Neurosci ; 15: 685372, 2021.
Article in English | MEDLINE | ID: mdl-35197816

ABSTRACT

Despite intracardiac malformation correction, children with Tetralogy of Fallot (TOF) may still suffer from brain injury. This cross-sectional study was primarily designed to determine the relationship between blood oxygenation level-dependent (BOLD) signal changes after surgery and cognition in school-aged children with TOF. To evaluate the differences between TOF children (n = 9) and healthy children (n = 9), resting-state functional magnetic resonance imaging (rs-fMRI) and the Wechsler Intelligence Scale for Children-Chinese revised edition (WISC-CR) were conducted in this study. The results showed that TOF children had a lower full-scale intelligence quotient (FSIQ, 95.444 ± 5.354, p = 0.022) and verbal intelligence quotient (VIQ, 92.444 ± 4.708, p = 0.003) than healthy children (FSIQ = 118.500 ± 4.330;VIQ = 124.250 ± 4.404), and that significant differences in regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF) existed between the two groups. Besides, VIQ had significantly positive correlations with the decreased ALFF value of the middle inferior occipital gyrus (MIOG, beta = 0.908, p = 0.012) after fully adjusting for all covariates. In addition, elevated ReHo values of the left and right precuneus were positively related to ALFF in the MIOG. This study revealed that brain injury substantially influences neural activity and cognition in postoperative TOF children, providing direct evidence of an association between BOLD signal changes and the VIQ and prompting further attention to language development in TOF children.

13.
J Vis Exp ; (164)2020 10 27.
Article in English | MEDLINE | ID: mdl-33191922

ABSTRACT

Ischemia/reperfusion-derived myocardial dysfunction is a common clinical scenario in patients after cardiac surgery. In particular, the sensitivity of cardiomyocytes to ischemic injury is higher than that of other cell populations. At present, hypothermia affords considerable protection against an expected ischemic insult. However, investigations into complex hypothermia-induced molecular changes remain limited. Therefore, it is essential to identify a culture condition similar to in vivo conditions that can induce damage similar to that observed in the clinical condition in a reproducible manner. To mimic ischemia-like conditions in vitro, the cells in these models were treated by oxygen/glucose deprivation (OGD). In addition, we applied a standard time-temperature protocol used during cardiac surgery. Furthermore, we propose an approach to use a simple but comprehensive method for the quantitative analysis of myocardial injury. Apoptosis and expression levels of apoptosis-associated proteins were assessed by flow cytometry and using an ELISA kit. In this model, we tested a hypothesis regarding the effects of different temperature conditions on cardiomyocyte apoptosis in vitro. The reliability of this model depends on strict temperature control, controllable experimental procedures, and stable experimental results. Additionally, this model can be used to study the molecular mechanism of hypothermic cardioprotection, which may have important implications for the development of complementary therapies for use with hypothermia.


Subject(s)
Hypothermia, Induced , Myocardium/pathology , Myocytes, Cardiac/pathology , Animals , Apoptosis , Caspase 3/metabolism , Caspase 8/metabolism , Cell Line , Cell Survival , Glucose/metabolism , Humans , Membrane Potential, Mitochondrial , Mitochondria, Heart/metabolism , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Reproducibility of Results , Temperature
14.
Front Neurol ; 11: 691, 2020.
Article in English | MEDLINE | ID: mdl-32765405

ABSTRACT

In children with tetralogy of Fallot (TOF), there is a risk of brain injury even if intracardiac deformities are corrected. This population follow-up study aimed to identify the correlation between cerebral morphology changes and cognition in postoperative school-aged children with TOF. Resting-state functional magnetic resonance imaging (rs-fMRI) and the Wechsler Intelligence Scale for Children-Chinese revised edition (WISC-CR) were used to assess the difference between children with TOF and healthy children (HCs). Multiple linear regression showed that the TOF group had a lower verbal intelligence quotient (VIQ, 95.000 ± 13.433, p = 0.001) than the HC group and that VIQ had significant positive correlations with the cortical thickness of both the left precuneus (p < 0.05) and the right caudal middle frontal gyrus (p < 0.05) after adjustment for preoperative SpO2, preoperative systolic blood pressure (SBP), preoperative diastolic blood pressure (DBP) and time of aortic override (AO). Our results suggested that brain injury induced by TOF would exert lasting effects on cortical and cognitive development at least to school age. This study provides direct evidence of the relationship between cortical thickness and VIQ and of the need for strengthened verbal training in school-aged TOF patients after corrective surgery.

15.
Ital J Pediatr ; 46(1): 63, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32430056

ABSTRACT

BACKGROUND: Coarctation of the aorta (CoA), presenting with local stenosis of the aorta is involved in many cardiovascular processes. However, there has been little research on the mechanism of coarctation of the aorta. METHODS: Altered proteins were identified by isobaric tag for relative and absolute quantitation (iTRAQ) technology in 8 participants, and further analysed by heatmap, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) and Search Tool for the Retrieval of Interacting Gene (STRING). Of these, two vascular structure-related proteins were further validated by using enzyme-linked immunosorbent assay (ELISA) in a new cohort of CoA patients. RESULTS: 39 differentially expressed plasma proteins were first identified in patients with coarctation of the aorta by iTRAQ. Of these, fibulin-1 (FBLN1) and insulin-like growth factor-binding protein complex acid labile subunit (ALS) were considered candidates and further validation also showed that the level of FBLN1 in the CoA group (8.92 ± 2.36 µg/ml) was significantly higher compared with control group (6.13 ± 1.94 µg/ml), and the level of ALS in CoA children (348.08 ± 216.74 ng/ml) was significantly lower than the level in normal children (619.46 ± 274.08 ng/ml). CONCLUSIONS: The differentially expressed proteins identified in the plasma from CoA patients indicated that they may play critical roles in CoA and that they could potentially be utilized as biomarkers for diagnosis. Altered vascular related proteins were associated with COA. These results provide a foundation for further understanding and studying the aetiology and pathogenesis of coarctation of the aorta.


Subject(s)
Aortic Coarctation/blood , Aortic Coarctation/diagnosis , Blood Proteins/metabolism , Calcium-Binding Proteins/blood , Carrier Proteins/blood , Glycoproteins/blood , Aortic Coarctation/etiology , Biomarkers/blood , Case-Control Studies , Female , Humans , Infant , Male , Prognosis , Proteomics
16.
Am J Cancer Res ; 10(1): 38-59, 2020.
Article in English | MEDLINE | ID: mdl-32064152

ABSTRACT

MicroRNAs (miRNAs) are short and non-coding RNAs binding to 3'UTR of target mRNAs to downregulate their expression. Recent studies have shown that miRNAs indirectly regulated alternative splicing (AS) by targeting splicing factors and caused shifts in splicing patterns of target genes. However, the roles of miRNA-regulating splicing factors in pancreatic cancer progression remain unknown. Herein, we reported that miR-193a-5p was markedly upregulated in pancreatic cancer tissues and cells and correlated with clinical outcomes of pancreatic cancer patients. Overexpression of miR-193a-5p contributed to the metastasis of pancreatic cancer cells both in vitro and in vivo. The mechanistic investigation suggested that miR-193a-5p modulated oxoglutarate dehydrogenase-like (OGDHL) and extracellular matrix protein 1 (ECM1) AS by targeting serine/arginine-rich splicing factor 6 (SRSF6), leading to the activation of the epithelial-to-mesenchymal transition (EMT) process. Together, our findings highlighted the role of miR-193a-5p-targeting SRSF6 in pancreatic cancer metastasis, which may serve as a novel target for pancreatic cancer diagnosis and therapy.

17.
Sci Rep ; 10(1): 80, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31919463

ABSTRACT

Leucocyte telomere length (LTL) has been reported to be linked to ageing, cancer and cardiovascular disease (CVD). This study aimed to explore the association between LTL and CVD risk in a nationally representative sample of U.S. adults. Complex associations, including nonlinearity and interaction, were also examined. A total of 7,378 subjects from the National Health and Nutrition Examination Survey (NHANES) 1999-2002 were collected. Telomere length was detected from DNA samples and expressed as the mean T/S ratio (telomere repeats per single-copy gene). We performed multiple logistic regression models and interactive analysis to explore the associations between LTL and CVD risk by adjusting for potential confounders. We also performed a sensitivity analysis to investigate the robustness of our results. Among all participants, LTL was associated with the risk of CVD (OR = 0.79, 95% CI: 0.63~0.98, P = 0.033) in a linear manner rather than in a nonlinear manner (P = 0.874). Interaction effects of LTL with both education (P = 0.017) and hypertension (P = 0.007) were observed. Furthermore, using subgroup analyses, protective effects of LTL on CVD risk were found in females and in individuals who were college graduates or above, had serum cotinine >10 ng/ml, did not have hypertension, or had normal white blood cell levels. LTL is linearly inversely associated with CVD risk in the general population of the United States.


Subject(s)
Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Leukocytes/pathology , Telomere Homeostasis , Telomere/genetics , Aged , Cardiovascular Diseases/epidemiology , Female , Humans , Leukocytes/metabolism , Male , United States/epidemiology
18.
FASEB J ; : fj201801013R, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30188754

ABSTRACT

Breast cancer stem cells (BCSCs), a small subset of breast cancer cells with stem cell-like properties, are essential in tumor formation, metastasis, resistance to anticancer therapies, and cancer recurrence. MicroRNAs (miRNAs) are involved in tumorigenicity by regulating specific oncogenes and tumor-suppressor genes, and their roles in BCSCs are becoming apparent. A novel, 3-dimensional (3D), semisolid culture system was established to culture MCF-7 spheroid cells with high percentage of BCSCs. The differences in miRNA expression among the MCF-7 parental cells, BCSC-enriched MCF-7 spheroid cells, and CD44+/CD24- MCF-7 cells were evaluated by miRNA microarray, and the high expression of miR-210 in MCF-7 spheroid cells and CD44+/CD24- MCF-7 cells was verified by quantitative RT-PCR. MCF-7 cells were cultured in a hypoxic chamber to detect the effect of hypoxia on miR-210 expression and the stemness of the cells. The 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyl tetrazolium bromide (MTT), transwell, and sphere-formation assays were performed to detect the proliferation, migration, and self-renewal ability of miR-210-overexpressed MCF-7 cells and MCF-7 spheroid cells with miR-210 knocked down. The target of miR-210 was validated with a dual-luciferase reporter assay and Western blotting. In vivo xenograft assay and metastasis assay were performed to study the effects of miR-210 targeting E-cadherin on BCSCs growth and lung metastasis, and the tumors were assessed by immunohistochemistry and immunofluorescence. We developed a novel 3D, semisolid culture system to culture MCF-7 spheroid cells, which are enriched in BCSCs, and found, by performing miRNAs expression profiling, miR-210 was up-regulated in those cells compared with MCF-7 parental cells. High miR-210 expression was also detected in CD44+/CD24- MCF-7 cells and human CD44+/CD24- breast cancer cells, which was demonstrated to be partially due to the hypoxic microenvironment around BCSCs in MCF-7 spheroids or solid tumors. Ectopic expression of miR-210 in MCF-7 cells promoted their migration, invasion, proliferation, and self-renewal in both in vitro and in vivo studies. We further reported that miR-210 suppressed E-cadherin expression by targeting the open reading frame region of E-cadherin mRNA and by up-regulation of E-cadherin transcription repressor, Snail. Accordingly, E-cadherin overexpression compromises the migration, invasion, proliferation, and self-renewal ability of miR-210-overexpressed MCF-7 both in vitro and in vivo. These findings reveal a novel regulatory pathway centered on hypoxia-mediated miR-210 targeting of E-cadherin, which contributes to the properties and breast tumorigenesis of BCSCs.-Tang, T., Yang, Z., Zhu, Q., Wu, Y., Sun, K., Alahdal, M., Zhang, Y., Xing, Y., Shen, Y., Xia, T., Xi, T., Pan, Y., Jin, L. Up-regulation of miR-210 induced by a hypoxic microenvironment promotes breast cancer stem cells metastasis, proliferation, and self-renewal by targeting E-cadherin.

19.
Cell Physiol Biochem ; 47(5): 2109-2125, 2018.
Article in English | MEDLINE | ID: mdl-29975934

ABSTRACT

BACKGROUND/AIMS: Pancreatic cancer remains one of the deadliest human malignancies, the lethality of which may be attributed to the presence of pancreatic cancer stem cells (PCSCs), a small subpopulation of cells existing within pancreatic tumor with high carcinogenesis. Therefore, it is crucial to establish an efficient enrichment and culture system of PCSCs and identify the key genes involved in the regulation of PCSCs. The three-dimensional (3D) liquid suspension mammosphere culture system has been established for enrichment and culture of PCSCs in vitro as the cell spheres are likely to originate from individual cell clone, but it has been challenged because the cell spheroids could be a result of cell aggregation. METHODS: We optimized the existing culture system by adding methylcellulose to create a 3D semi-solid system which prevented the non-specific aggregation. Then we identified the CSC properties of Panc-1 spheroid cells cultured by this system by detecting the genes associated with stemness and by evaluation of the tumorigenicity in vitro and in vivo through invasion, migration and xenograft experiments methods. Subsequently, we performed high-throughput sequencing (HTS) of the Panc-1 spheroid cells. RESULTS: We confirmed the PCSCs properties and high malignancy of the Panc-1 spheroid cells enriched by our novel 3D semi-solid system both in vitro and in vivo. Hundreds of mRNA, microRNA (miRNA) and dozens of long non-coding RNA (LncRNA) were identified to be differentially regulated in PCSCs-like Panc-1 spheroid cells compared with their parental cells by HTS. CONCLUSIONS: Our results demonstrate an efficient enrichment and culture system for Panc-1 spheroid cells with the PCSCs properties. The differentially expressed genes and their targets identified by the HTS of the Panc-1 spheroid cells can serve as new potential biomarkers for pancreatic cancer diagnosis and targeted therapy.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/metabolism , Spheroids, Cellular/metabolism , Animals , Cell Culture Techniques , Cell Line, Tumor , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/pathology , Spheroids, Cellular/pathology
20.
Artif Cells Nanomed Biotechnol ; 46(sup1): 642-652, 2018.
Article in English | MEDLINE | ID: mdl-29457930

ABSTRACT

The main challenge of anticancer drugs is poor tumor targeting. Now cellular carriers are widely investigated to deliver anticancer agents. As an ideal cellular candidate, human umbilical cord derived mesenchymal stem cells (hUC-MSCs) possess inherent tropism potential to tumor. Here, we constructed hUC-MSCs carrying transferrin-inspired-nanoparticles that contain doxorubicin(hUC-MSCs-Tf-inspired-NPs) to achieve enhanced anti-tumor efficacy and made an evaluation. Results represented that hUC-MSCs-Tf-inspired-NPs not only exhibit the controlled-release property of Tf-inspired-NPs, but also integrate tumor tropism and penetrative abilities of MSCs. The tumor volume of nude mice bearing breast cancer MCF-7 treated with hUC-MSCs-Tf-inspired-NPs, was remarkably reduced compared to those treated with free drug or Tf-inspired-NPs. Thus, Tf-inspired-NPs loaded hUC-MSCs have a potential to deliver anticancer drugs.


Subject(s)
Breast Neoplasms/drug therapy , Doxorubicin/metabolism , Doxorubicin/pharmacology , Drug Carriers/chemistry , Mesenchymal Stem Cells/chemistry , Nanostructures/chemistry , Umbilical Cord/cytology , Animals , Breast Neoplasms/pathology , Doxorubicin/therapeutic use , Drug Carriers/metabolism , Drug Liberation , Female , Humans , MCF-7 Cells , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Nude , Molecular Targeted Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...