Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
J Ethnopharmacol ; 330: 118264, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38692417

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Optimized New Shengmai Powder (ONSMP) is a sophisticated traditional Chinese medicinal formula renowned for bolstering vital energy, optimizing blood circulation, and mitigating fluid retention. After years of clinical application, ONSMP has shown a significant impact in improving myocardial injury and cardiac function and has a positive effect on treating heart failure. However, many unknowns exist about the molecular biological mechanisms of how ONSMP exerts its therapeutic effects, which require further research and exploration. AIM OF THE STUDY: Exploring the potential molecular biological mechanisms by which ONSMP ameliorates cardiomyocyte apoptosis and ferroptosis in ischemic heart failure (IHF). MATERIALS AND METHODS: First, we constructed a rat model of IHF by inducing acute myocardial infarction through surgery and using echocardiography, organ coefficients, markers of heart failure, antioxidant markers, and histopathological examination to assess the effects of ONSMP on cardiomyocyte apoptosis and ferroptosis in IHF rats. Next, we used bioinformatics analysis techniques to analyze the active components, signaling pathways, and core targets of ONSMP and calculated the interactions between core targets and corresponding elements. Finally, we detected the positive expression of apoptosis and ferroptosis markers and core indicators of signaling pathways by immunohistochemistry; detected the mean fluorescence intensity of core indicators of signaling pathways by immunofluorescence; detected the protein expression of signaling pathways and downstream effector molecules by western blotting; and detected the mRNA levels of p53 and downstream effector molecules by quantitative polymerase chain reaction. RESULTS: ONSMP can activate the Ser83 site of ASK by promoting the phosphorylation of the PI3K/AKT axis, thereby inhibiting the MKK3/6-p38 axis and the MKK4/7-JNK axis signaling to reduce p53 expression, and can also directly target and inhibit the activity of p53, ultimately inhibiting p53-mediated mRNA and protein increases in PUMA, SAT1, PIG3, and TFR1, as well as mRNA and protein decreases in SLC7A11, thereby inhibiting cardiomyocyte apoptosis and ferroptosis, effectively improving cardiac function and ventricular remodeling in IHF rat models. CONCLUSION: ONSMP can inhibit cardiomyocyte apoptosis and ferroptosis through the PI3K/AKT/p53 signaling pathway, delaying the development of IHF.


Subject(s)
Apoptosis , Drug Combinations , Drugs, Chinese Herbal , Ferroptosis , Heart Failure , Myocytes, Cardiac , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Tumor Suppressor Protein p53 , Animals , Ferroptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Heart Failure/drug therapy , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Apoptosis/drug effects , Male , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Rats , Phosphatidylinositol 3-Kinase/metabolism , Myocardial Ischemia/drug therapy , Disease Models, Animal , Powders
2.
Stem Cell Res Ther ; 14(1): 273, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37759328

ABSTRACT

BACKGROUND: Identification of promising targeted antigens that exhibited cancer-specific expression is a crucial step in the development of novel antibody-targeted therapies. We here aimed to investigate the anti-tumor activity of a novel monoclonal antibody (mAb) 11C9 and identify the antibody tractable target in the hepatocellular cancer stem cells (HCSCs). METHODS: The identification of the targeted antigen was conducted using SDS-PAGE, western blot, mass spectrometry, and co-immunoprecipitation. Silence of HSP90 was induced by siRNA interference. Positive cells were sorted by fluorescence-activated cell sorting. Double-immunofluorescent (IF) staining and two-color flow cytometry detected the co-expression. Self-renewal, invasion, and drug resistance were assessed by sphere formation, matrigel-coated Transwell assay, and CCK-8 assay, respectively. Tumorigenicity was evaluated in mouse xenograft models. RNA-seq and bioinformatics analysis were performed to explore the mechanism of mAb 11C9 and potential targets. RESULTS: MAb 11C9 inhibited invasion and self-renewal abilities of HCC cell lines and reversed the cisplatin resistance. HSP90 (~ 95 kDa) was identified as a targeted antigen of mAb 11C9. Tissue microarrays and online databases revealed that HSP90 was overexpressed in HCC and associated with a poor prognosis. FACS and double-IF staining showed the co-expression of HSP90 and CSCs markers (CD90 and ESA). In vitro and in vivo demonstrated the tumorigenic potentials of HSP90. The inhibition of HSP90 by siRNA interference or 17-AAG inhibitor both decreased the number of invasion, sphere cells, and CD90+ or ESA+ cells, as well as reversed the resistance. Bioinformatics analysis and western blot verified that HSP90 activated Wnt/ß-catenin signaling. CONCLUSIONS: The study preliminarily revealed the anti-tumor activity of mAb 11C9. More importantly, we identified HSP90 as a targeted antigen of mAb 11C9, which functions as an oncogene in phenotype shaping, stemness maintenance, and therapeutic resistance by activating Wnt/ß-catenin signaling.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , beta Catenin/metabolism , Cell Line, Tumor , RNA, Small Interfering/metabolism , Disease Models, Animal , Neoplastic Stem Cells/metabolism , Cell Proliferation
3.
Parasitology ; 150(9): 821-830, 2023 08.
Article in English | MEDLINE | ID: mdl-37395062

ABSTRACT

In this study, the mitochondrial genome of Eulaelaps silvestris, which parasitizes Apodemus chevrieri, was sequenced and assembled to fill the gap in understanding the molecular evolution of the genus Eulaelaps. The E. silvestris mitochondrial genome is a double-stranded DNA molecule with a length of 14 882 bp, with a distinct AT preference for base composition and a notably higher AT content than GC content. The arrangement between genes is relatively compact, with a total of 10 gene intergenic regions and 12 gene overlap regions. All protein-coding genes had a typical ATN initiation codon, and only 2 protein-coding genes had an incomplete termination codon T. Out of the 13 protein-coding genes, the 5 most frequently used codons ended in A/U, with only 1 codon ending in G/C had an relative synonymous codon usage value >1. Except for trnS1 and trnS2, which lacked the D arm, all other tRNAs were able to form a typical cloverleaf structure; and there were a total of 38 mismatches in the folding process of tRNA genes. Unlike the gene arrangement order of the arthropod hypothetical ancestor, the E. silvestris mitochondrial genome underwent fewer rearrangements, mainly near tRNA genes and control regions. Both the maximum likelihood tree and the Bayesian tree showed that the family Haemogamasidae is most closely related to the family Dermanyssidae. The results not only provide a theoretical basis for studying the phylogenetic relationships of the genus Eulaelaps, but also provide molecular evidence that the family Haemogamasidae does not belong to the subfamily Laelapidae.


Subject(s)
Genome, Mitochondrial , Animals , Phylogeny , Bayes Theorem , Base Sequence , RNA, Transfer/genetics , Codon/genetics , RNA, Ribosomal/genetics
4.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1792-1799, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282953

ABSTRACT

Arrhythmia is an external manifestation of cardiac electrophysiological disorder. It exists in healthy people and patients with various heart diseases, which is often associated with other cardiovascular diseases. The contraction and diastole of myocardium are inseparable from the movement of ions. There are many ion channels in the membrane and organelle membrane of myocardium. The dynamic balance of myocardial ions is vital in maintaining myocardial electrical homeostasis. Potassium ion channels that have a complex variety and a wide distribution are involved in the whole process of resting potential and action potential of cardiomyocytes. Potassium ion channels play a vital role in maintaining normal electrophysiological activity of myocardium and is one of the pathogenesis of arrhythmia. Traditional Chinese medicine(TCM)has unique advantages in treating arrhythmia for its complex active components and diverse targets. A large number of TCM preparations have definite effect on treating arrhythmia-related diseases, whose antiarrhythmic mechanism may be related to the effect on potassium channel. This article mainly reviewed the relevant studies on the active components in TCM acting on different potassium channels to provide references for clinical drug use and development.


Subject(s)
Heart Diseases , Potassium Channels , Humans , Medicine, Chinese Traditional , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Arrhythmias, Cardiac/drug therapy , Heart Diseases/drug therapy , Ions
5.
Exp Appl Acarol ; 90(3-4): 301-316, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37349609

ABSTRACT

Some mites of the family Haemogamasidae can transmit a variety of zoonotic diseases and have important public health and safety implications. Currently, however, little attention has been paid to molecular data of Haemogamasidae species, limiting our understanding of their evolutionary and phylogenetic relationships. In this study, the complete mitochondrial genome of Eulaelaps huzhuensis was determined for the first time, and its genomic information was analyzed in detail. The mitochondrial genome of E. huzhuensis is 14,872 bp in length with 37 genes and two control regions. The base composition showed a distinct AT preference. Twelve protein-coding genes have a typical ATN as the start codon, and three protein-coding genes have incomplete stop codons. During the folding of tRNA genes, a total of 30 mismatches occurred, and three tRNA genes had an atypical cloverleaf secondary structure. The order of the E. huzhuensis mitochondrial genome arrangement is a new type of rearrangement in Mesostigmata. The phylogenetic analysis confirmed that the family Haemogamasidae is a monophyletic branch and does not belong to a subfamily of the Laelapidae. Our results lay the foundation for subsequent studies on the phylogeny and evolutionary history of the family Haemogamasidae.


Subject(s)
Genome, Mitochondrial , Mites , Animals , RNA, Ribosomal/genetics , Phylogeny , Mites/genetics , RNA, Transfer/genetics
6.
Brain ; 146(8): 3373-3391, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36825461

ABSTRACT

GGC repeat expansion in the 5' untranslated region (UTR) of NOTCH2NLC is associated with a broad spectrum of neurological disorders, especially neuronal intranuclear inclusion disease (NIID). Studies have found that GGC repeat expansion in NOTCH2NLC induces the formation of polyglycine (polyG)-containing protein, which is involved in the formation of neuronal intranuclear inclusions. However, the mechanism of neurotoxicity induced by NOTCH2NLC GGC repeats is unclear. Here, we used NIID patient-specific induced pluripotent stem cell (iPSC)-derived 3D cerebral organoids (3DCOs) and cellular models to investigate the pathophysiological mechanisms of NOTCH2NLC GGC repeat expansion. IPSC-derived 3DCOs and cellular models showed the deposition of polyG-containing intranuclear inclusions. The NOTCH2NLC GGC repeats could induce the upregulation of autophagic flux, enhance integrated stress response and activate EIF2α phosphorylation. Bulk RNA sequencing for iPSC-derived neurons and single-cell RNA sequencing (scRNA-seq) for iPSC-derived 3DCOs revealed that NOTCH2NLC GGC repeats may be associated with dysfunctions in ribosome biogenesis and translation. Moreover, NOTCH2NLC GGC repeats could induce the NPM1 nucleoplasm translocation, increase nucleolar stress, impair ribosome biogenesis and induce ribosomal RNA sequestration, suggesting dysfunction of membraneless organelles in the NIID cellular model. Dysfunctions in ribosome biogenesis and phosphorylated EIF2α and the resulting increase in the formation of G3BP1-positive stress granules may together lead to whole-cell translational inhibition, which may eventually cause cell death. Interestingly, scRNA-seq revealed that NOTCH2NLC GGC repeats may be associated with a significantly decreased proportion of immature neurons while 3DCOs were developing. Together, our results underscore the value of patient-specific iPSC-derived 3DCOs in investigating the mechanisms of polyG diseases, especially those caused by repeats in human-specific genes.


Subject(s)
DNA Helicases , RNA Helicases , Humans , Poly-ADP-Ribose Binding Proteins , RNA Recognition Motif Proteins , 5' Untranslated Regions , Intranuclear Inclusion Bodies , Ribosomes , Trinucleotide Repeat Expansion/genetics
7.
ACS Nano ; 16(3): 3664-3673, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35166113

ABSTRACT

We propose a universal strategy to 3D printing the graphene oxide (GO) complex structure with GO highly aligned and densely compacted, by the combination of direct ink writing and constrained drying. The constraints not only allow the generation of a huge capillary force accompanied by water evaporation at nanoscale, which induces the high compaction and alignment of GO, but also limit the shrinkage of the extruded filaments only along the wall thickness direction, therefore, successfully maintaining the uniformity of the structure at macroscale. We discover that the shrinkage stress gradually increased during the drying process, with the maximum exceeding ∼0.74 MPa, significantly higher than other colloidal systems. Interestingly, because of the convergence between plates with different orientations of the constraints, a gradient of porosity naturally formed across the thickness direction at the corner. This allows us to 3D print humidity sensitive GO based soft robotics.

9.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(5): 490-494, 2021 Sep.
Article in Chinese | MEDLINE | ID: mdl-34816659

ABSTRACT

Objective: To investigate the effects of RPA1 silencing on the invasion, migration and cell cycle of human nasopharyngeal carcinoma CNE-2R cells. Methods: shRNA technology was used to construct CNE-2R cell lines with RPA1 low-expression, which were verified by RT-PCR and Western blotting. The following assays were performed using the three 3 groups: control group(CNE-2),negative control group(NC-shRNA) and RPA1 down-regulation group(RPA1-shRNA). The effects of RPA silence on the proliferation, invasion, migration, and cell cycle of CNE-2R cells were detected using Cell Counting Kit-8, clone formation experiment, Transwell, scratch test and flow cytometry, respectively. The expressions of Chk2, p-Chk2, Cdc 25c and p-cdc25c were tested by Western blot assay. Results: The expressions of RPA1 mRNA and protein in the RPA1-shRNA group were lower than those in the CNE-2 and NC-shRNA groups significantly (P<0.01 and 0.05). Compared with CNE-2 and NC-shRNA groups, the abilities of proliferation, invasion and migration of RPA1-shRNA group were decreased and the cell cycle in the RPA1-shRNA group was blocked in the G2/M phase (P<0.01). The expressions of Chk2 and Cdc25c in RPA1-shRNA group cells were lower than those in CNE-2R and NC-shRNA group cells (P<0.05), while the expressions of p-Chk2 and p-cdc25c were higher than those in the other groups (P<0.05). Conclusion: After RPA1 silenced, the proliferation and migration of radio resistant human nasopharyngeal carcinoma CNE-2R cells was inhibited, resulting in cell cycle arrested in the G2/M phase.


Subject(s)
Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Replication Protein A/genetics , Apoptosis , Cell Cycle , Cell Division , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Gene Silencing , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics
10.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(5): 529-533, 2021 Sep.
Article in Chinese | MEDLINE | ID: mdl-34816667

ABSTRACT

Objective: To compare the changes in the number of circulating endothelial progenitor cells and hypoxia-inducible factors in patients with type 2 diabetes at different altitudes, and to provide a basis for the research and treatment of type 2 diabetes vascular complications. Methods: Selected Type 2 diabetes patients who were diagnosed in a low altitude area of 386 m (Xianyang City) and a high altitude area of 1 520 m (Lanzhou) (25 persons/29 persons) and healthy persons (20 persons/20 persons) were selected. An automatic biochemical analyzer was used to detect the indexes of blood lipids, blood glucose, and glycosylated hemoglobin of the two groups of people, and the concentration of Hypoxia inducible factor-1α (HIF-1α) was detected by enzyme-linked immunosorbent assay (ELISA). The number of circulating endothelial progenitor cells (EPCs) in peripheral blood was determined by a cytometer. Results: No matter in low or high altitude areas, the number of circulating EPCs in the diabetes group was lower than that in the healthy group (P<0.01). The levels of body mass index (BMI), waist to hip ratio (WHR), triglyceride (TG), fasting blood glucose (FBG) and glycosylated hemoglobin (HbAlc) were increased (P<0.05). Compared with the low-altitude group, the expression levels of HIF-1α in diabetic patients at high-altitude and healthy people were increased significantly (P<0.05), while the number of circulating EPCs was decreased significantly (P<0.05), and the number of circulating EPCs in healthy people or the patients with type 2 diabetes without vascular complications was higher than that of patients with type 2 diabetes with vascular complications (P<0.05). Conclusion: With the increase in altitude, the expression level of HIF-1α in type 2 diabetes mellitus(T2DM)patients is increased, and the number of circulating EPCs is decreased, which is closely related to the degree of vascular disease. Therefore, it is possible through transplantation of EPCs for high altitude T2DM patients to achieve the prevention and improvement of diabetic vascular complications.


Subject(s)
Altitude , Diabetes Mellitus, Type 2 , Endothelial Progenitor Cells , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Glycated Hemoglobin , Humans
11.
Cell Death Discov ; 7(1): 282, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34635641

ABSTRACT

The fatality rate of non-small cell lung cancer (NSCLC) has been high due to the existence of cancer stem cells (CSCs). Non-muscle myosin heavy chain 9 (MYH9) can promote the progression of various tumors, but its effect on the stem cell-like characteristics of lung cancer cells (LCCs) has not been clarified. Our research found that the stemness characteristics of LCCs were significantly enhanced by the overexpression of MYH9, and the knockout of MYH9 had the opposite effects. The in vivo with inhibitor blebbistatin further confirmed the effect of MYH9 on the stem cell-like behavior of LCCs. Furthermore, western blotting showed that the expression level of CSCs markers (CD44, SOX2, Nanog, CD133, and OCT4) was also regulated by MYH9. Mechanistic studies have shown that MYH9 regulates stem cell-like features of LCCs by regulating the mTOR signaling pathway, which was supported by sphere formation experiments after LCCs were treated with inhibitors Rapamycin and CHIR-99021. Importantly, high expression of MYH9 in lung cancer is positively correlated with poor clinical prognosis and is an independent risk factor for patients with NSCLC.

12.
J Tradit Chin Med ; 41(5): 826-832, 2021 10.
Article in English | MEDLINE | ID: mdl-34708642

ABSTRACT

OBJECTIVE: To describe a protocol to assess the effects of Traditional Chinese Medicine (TCM) on patients with coronary heart disease (CHD) showing symptoms of phlegm-heat-stasis symptom pattern. METHODS: This is a single-blind randomized controlled trial that will be conducted in the First Teaching Hospital of Tianjin University of TCM and 60 patients with CHD showing phlegm-heat-stasis symptom pattern will be included. Patients will be randomly divided into either a treatment group (Qingre Huatan formulae + Western Medicine) or to a control group (conventional Western Medicine only) for 7-14 d. Primary patient outcomes will be vascular endothelial function and quality of life. Measurement data will be expressed as mean ± standard deviation using t-test analysis or repeated-measure variance analysis. Enumeration data will be expressed by cases and percentages, using χ2 analysis, and rank sum test will be used for ranked data. RESULTS: This study further verified the effectiveness and safety of Qingre Huatan formulae for the phlegm-heat-stasis syndrome pattern of CHD on the basis of previous studies on the characteristics of syndromes and medication rules. DISCUSSION: Phlegm-heat-stasis symptom pattern has become a common manifestation in CHD. Standardized Western medications together with TCM have been extensively used in China and have developed into a comprehensive treatment model. Our trial will help formulate recommendations for symptom maintenance and provide clinical evidence for the application of TCM for patients with CHD showing phlegm-heat-stasis symptom pattern.


Subject(s)
Coronary Disease , Medicine, Chinese Traditional , Coronary Disease/drug therapy , Hot Temperature , Humans , Medicine, Chinese Traditional/methods , Quality of Life , Randomized Controlled Trials as Topic , Single-Blind Method
13.
Front Pharmacol ; 12: 668407, 2021.
Article in English | MEDLINE | ID: mdl-34335247

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an emergent infectious pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is highly contagious and pathogenic. COVID-19 has rapidly swept across the world since it was first discovered in December 2019 and has drawn significant attention worldwide. During the early stages of the outbreak in China, traditional Chinese medicines (TCMs) were involved in the whole treatment process. As an indispensable part of TCM, Chinese patent medicines (CPMs) played an irreplaceable role in the prevention and treatment of this epidemic. Their use has achieved remarkable therapeutic efficacy during the period of medical observation and clinical treatment of mild, moderate, severe, and critical cases and during convalescence. In order to better propagate and make full use of the benefits of TCM in the treatment of COVID-19, this review will summarize the potential target of SARS-CoV-2 as well as the theoretical basis and clinical efficacy of recommended 22 CPMs by the National Health Commission and the Administration of TCM and local provinces or cities in the treatment of COVID-19. Additionally, the study will further analyze the drug composition, potential active ingredients, potential targets, regulated signaling pathways, and possible mechanisms for COVID-19 through anti-inflammatory and immunoregulation, antiviral, improve lung injury, antipyretic and organ protection to provide meaningful information about the clinical application of CPMs.

14.
Phytochemistry ; 190: 112850, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34217042

ABSTRACT

The phytochemical assessment of Cinnamomum migao H. W. Li fruits illustrated the isolation and identification of ten undescribed guaiane-type sesquiterpenoids "miganoids A-J″ and one undescribed sesquiterpene "7(S)-(hydroxypropanyl)-3-methyl-2-(4-oxopentyl) cyclohex-2-en-1-one". The extensive analysis of HRESIMS, 1D NMR, 2D NMR, experimental circular dichroism (ECD), and calculated (ECD) analysis entirely corroborated the configuration and confirmation of these isolated compounds. Moreover, the anti-inflammatory properties of the reported compounds were established by determining the LPS induced nitric oxide production. In the current study, miganoid C is testified the most active compound with about 89% NO inhibition. Additionally, miganoids C, E, and G also exhibited moderate inhibitory effects against the pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6). The IC50 values for miganoid C and miganoid G were determined as 19.4 and 14.5 µΜ against TNF-α mRNA, respectively.


Subject(s)
Cinnamomum , Sesquiterpenes , Anti-Inflammatory Agents/pharmacology , Lipopolysaccharides/pharmacology , Molecular Structure , Nitric Oxide , Sesquiterpenes/pharmacology , Sesquiterpenes, Guaiane
15.
Front Cell Dev Biol ; 9: 659260, 2021.
Article in English | MEDLINE | ID: mdl-34164393

ABSTRACT

BACKGROUND: Focusing on antiangiogenesis may provide promising choices for treatment of gastric cancer (GC). This study aimed to investigate the mechanistic role of BCAT1 in the pathogenesis of GC, particularly in angiogenesis. METHODS: Bioinformatics and clinical samples analysis were used to investigate the expression and potential mechanism of BCAT1 in GC. BGC823 cells with BCAT1 overexpression or silencing were induced by lentiviral transduction. Cell phenotypes and angiogenesis were evaluated. The relevant proteins were quantized by Western blotting, immunohistochemistry, or immunofluorescence. Xenograft models were constructed to confirm the role of BCAT1 in vivo. RESULTS: BCAT1 was overexpressed in GC patients and associated with lower survival. BCAT1 expression was correlated with proliferation-, invasion-, or angiogenesis-related markers expression and pathways. Silencing BCAT1 expression suppressed cell viability, colony formation, cycle progression, invasion, and angiogenesis of BGC823 cells, as well as the tumor growth of xenograft models, whereas overexpressing BCAT1 had the opposite results both in vitro and in vivo. Bioinformatics analysis and Western blotting demonstrated that BCAT1 activated the PI3K/AKT/mTOR pathway. The addition of LY294002 reversed the tumor growth induced by BCAT1 overexpression, further verifying this mechanism. CONCLUSION: BCAT1 might act as an oncogene by facilitating proliferation, invasion, and angiogenesis through activation of the PI3K/AKT/mTOR pathway. This finding could aid the optimization of antiangiogenesis strategies.

16.
Stem Cell Res Ther ; 12(1): 119, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33579362

ABSTRACT

BACKGROUND: Tumor-associated antigens (TAAs) can be targeted in cancer therapy. We previously identified a monoclonal antibody (mAb) 12C7, which presented anti-tumor activity in lung cancer stem cells (LCSCs). Here, we aimed to identify the target antigen for 12C7 and confirm its role in LCSCs. METHODS: Immunofluorescence was used for antigen localization. After targeted antigen purification by electrophoresis and immunoblot, the antigen was identified by LC-MALDI-TOF/TOF mass spectrometry, immunofluorescence, and immunoprecipitation. The overexpression or silence of ENO1 was induced by lentiviral transduction. Self-renewal, growth, and invasion of LCSCs were evaluated by sphere formation, colony formation, and invasion assay, respectively. High-throughput transcriptome sequencing (RNA-seq) and bioinformatics analysis were performed to analyze downstream targets and pathways of targeted antigen. RESULTS: Targeted antigen showed a surface antigen expression pattern, and the 43-55 kDa protein band was identified as α-enolase (ENO1). Self-renewal, growth, and invasion abilities of LCSCs were remarkably inhibited by ENO1 downregulation, while enhanced by ENO1 upregulation. RNA-seq and bioinformatics analysis eventually screened 4 self-renewal-related and 6 invasion-related differentially expressed genes. GSEA analysis and qRT-PCR verified that ENO1 regulated self-renewal, invasion-related genes, and pathways. KEGG pathway analysis and immunoblot demonstrated that ENO1 inactivated AMPK pathway and activated mTOR pathway in LCSCs. CONCLUSIONS: ENO1 is identified as a targeted antigen of mAb 12C7 and plays a pivotal role in facilitating self-renewal, growth, and invasion of LCSCs. These findings provide a potent therapeutic target for the stem cell therapy for lung cancer and have potential to improve the anti-tumor activity of 12C7.


Subject(s)
Neoplasms , Phosphopyruvate Hydratase , AMP-Activated Protein Kinases , Antibodies, Monoclonal , Biomarkers, Tumor , Cell Line, Tumor , Lung , Neoplastic Stem Cells , Phenotype , Phosphopyruvate Hydratase/genetics , TOR Serine-Threonine Kinases/genetics
17.
Cell Death Dis ; 11(10): 870, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067426

ABSTRACT

Recent studies have demonstrated that gastric cancer stem cells (CSCs) are a rare sub-group of gastric cancer (GC) cells and have an important role in promoting the tumor growth and progression of GC. In the present study, we demonstrated that the glycolytic enzyme Enolase 1 (ENO1) was involved in the regulation of the stem cell-like characteristics of GC cells, as compared to the parental cell lines PAMC-82 and SNU16, the expression of ENO1 in spheroids markedly increased. We then observed that ENO1 could enhance stem cell-like characteristics, including self-renewal capacity, cell invasion and migration, chemoresistance, and even the tumorigenicity of GC cells. ENO1 is known as an enzyme that is involved in glycolysis, but our results showed that ENO1 could markedly promote the glycolytic activity of cells. Furthermore, inhibiting glycolysis activity using 2-deoxy-D-glucose treatment significantly reduced the stemness of GC cells. Therefore, ENO1 could improve the stemness of CSCs by enhancing the cells' glycolysis. Subsequently, to further confirm our results, we found that the inhibition of ENO1 using AP-III-a4 (ENOblock) could reduce the stemness of GC cells to a similar extent as the knockdown of ENO1 by shRNA. Finally, increased expression of ENO1 was related to poor prognosis in GC patients. Taken together, our results demonstrated that ENO1 is a significant biomarker associated with the stemness of GC cells.


Subject(s)
Biomarkers, Tumor/metabolism , DNA-Binding Proteins/metabolism , Glycolysis/physiology , Neoplastic Stem Cells/metabolism , Phosphopyruvate Hydratase/metabolism , Stomach Neoplasms/metabolism , Tumor Suppressor Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/physiology , Gene Expression Regulation, Neoplastic/genetics , Glycolysis/genetics , Humans , Phosphopyruvate Hydratase/genetics , Stomach/pathology , Stomach Neoplasms/pathology
18.
Ann Rheum Dis ; 79(11): 1460-1467, 2020 11.
Article in English | MEDLINE | ID: mdl-32737104

ABSTRACT

OBJECTIVES AND METHODS: With 432 513 samples from UK Biobank dataset, multivariable linear/logistic regression were used to estimate the relationship between psoriasis/psoriatic arthritis (PsA) and estimated bone mineral density (eBMD)/osteoporosis, controlling for potential confounders. Here, confounders were set in three ways: model0 (including age, height, weight, smoking and drinking), model1 (model0 +regular physical activity) and model2 (model1 +medication treatments). The eBMD was derived from heel ultrasound measurement. And 4904 patients with psoriasis and 847 patients with PsA were included in final analysis. Mendelian randomisation (MR) approach was used to evaluate the causal effect between them. RESULTS: Lower eBMD were observed in patients with PsA than in controls in both model0 (ß-coefficient=-0.014, p=0.0006) and model1 (ß-coefficient=-0.013, p=0.002); however, the association disappeared when conditioning on treatment with methotrexate or ciclosporin (model2) (ß-coefficient=-0.005, p=0.28), mediation analysis showed that 63% of the intermediary effect on eBMD was mediated by medication treatment (p<2E-16). Patients with psoriasis without arthritis showed no difference of eBMD compared with controls. Similarly, the significance of higher risk of osteopenia in patients with PsA (OR=1.27, p=0.002 in model0) could be eliminated by conditioning on medication treatment (p=0.244 in model2). Psoriasis without arthritis was not related to osteopenia and osteoporosis. The weighted Genetic Risk Score analysis found that genetically determined psoriasis/PsA were not associated with eBMD (p=0.24 and p=0.88). Finally, MR analysis showed that psoriasis/PsA had no causal effect on eBMD, osteoporosis and fracture. CONCLUSIONS: The effect of PsA on osteoporosis was secondary (eg, medication) but not causal. Under this hypothesis, psoriasis without arthritis was not a risk factor for osteoporosis.


Subject(s)
Antirheumatic Agents/therapeutic use , Bone Density/drug effects , Osteoporosis/epidemiology , Psoriasis/complications , Psoriasis/drug therapy , Humans , Mendelian Randomization Analysis
19.
Huan Jing Ke Xue ; 41(6): 2898-2907, 2020 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-32608807

ABSTRACT

Plants modify the soil microenvironment through root exudation. It is important to study the dynamic changes of soil ecosystem from the perspective of root-soil-microbe interactions after vegetation restoration in the riparian zone of the Three Gorges Reservoir (TGR). The rhizosphere and bulk soils of Cynodon dactylon, Hemarthria altissima, Taxodium distichum, and Salix matsudana were collected from the vegetation restoration demonstration base of Ruxi River to explore the differences in nutrient contents and enzyme activities between the rhizosphere and bulk soils. At the same time, the diversity of the bacterial community in the rhizosphere and bulk soils was also investigated using the high throughput sequencing method, with the aim to clarify the growth adaptabilities and nutritional utilization strategies within a more precise rhizosphere range. The results showed that ① Suitable plants enhanced the transformation efficiency of rhizosphere nutrients in different ways to improve their adaptability to the soil environment in the TGR. Compared with bulk soil, root activities had significant effects on nutrient contents in the rhizosphere. Among them, SOC, AN, TN, and AP were enriched significantly to a certain degree, while the changes of potassium were not consistent in different plant species. ② In the process of vegetation restoration, the deposition of litter and root secretion indirectly regulated soil enzyme activity. Invertase, urease, and acid phosphatase, all exhibited positive rhizosphere effects (R/S>1) in these four suitable plant species. However, considering the differences in root structure and physiological characteristics between herbaceous and woody plants, the rhizosphere effect of these three enzymes in four plants was different. ③ The results of high-throughput sequencing showed that there was no significant difference in bacterial community diversity between the rhizosphere and bulk soil of four suitable plant species in the TGR. In addition, Proteobacteria, Acidobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, Planctomycetes, Cyanobacteria, Firmicutes, Nitrospirae, Gemmatimonadetes, WS3, and Crenarchaeota were the twelve most abundant bacterial phyla in the rhizosphere and bulk soils, serving the ecological functions of nutrition absorption and disease suppression. Their colonization was found to be beneficial to the stress resistance of plants growing in harsh riparian ecosystems in the TGR.


Subject(s)
Ecosystem , Soil , Nutrients , Plant Roots , Plants , Rhizosphere , Soil Microbiology
20.
Korean J Parasitol ; 58(2): 153-159, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32418384

ABSTRACT

The chigger mite Leptotrombidium sialkotense is one of the 6 main vectors of scrub typhus in China. Before present study, L. sialkotense was found in some parts of Hunan province, China with a narrow geographical distribution. During field investigation 2016-2017, we found L. sialkotense in Jingha, southern Yunnan, China. Of 15 small mammal host species, L. sialkotense were collected from 6 species of the hosts. Rattus brunneusculus was a dominant host of L. sialkotense, from which 98.3% of the mites were collected. The chigger mite showed a relatively high infestation prevalence (PM=11.7%) and mean abundance (MA=0.5) in comparison with the rest 5 host species. These results reveal a certain host specificity of L. sialkotense to a rat R. brunneusculus. The mite L. sialkotense showed an aggregated distribution on the host (P<0.05). A positive correlation observed between L. sialkotense and the body length of hosts. There was a positive interspecific association between L. sialkotense and 2 other dominant vectors, L. deliense and L. scutellare.


Subject(s)
Disease Vectors , Scrub Typhus/parasitology , Trombiculidae , Animals , China/epidemiology , Host-Parasite Interactions , Rats , Scrub Typhus/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...