Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 671: 327-334, 2023 09 03.
Article in English | MEDLINE | ID: mdl-37327704

ABSTRACT

The serotonin receptor 5-HT6R is an important G-protein-coupled receptor (GPCR) that involved in essential functions within the central and peripheral nervous systems and is linked to various psychiatric disorders. Selective activation of 5-HT6R promotes neural stem cell regeneration activity. As a 5-HT6R selective agonist, 2-(5 chloro-2-methyl-1H-indol-3-yl)-N, N-dimethylethanolamine (ST1936) has been widely used to investigate the functions of the 5-HT6R. The molecular mechanism of how ST1936 is recognized by 5-HT6R and how it effectively couples with Gs remain unclear. Here, we reconstituted the ST1936-5-HT6R-Gs complex in vitro and solved its cryo-electron microscopy structure at 3.1 Å resolution. Further structural analysis and mutational studies facilitated us to identify the residues of the Y3107.43 and "toggle switch" W2816.48 of the 5-HT6R contributed to the higher efficacy of ST1936 compared with 5-HT. By uncovering the structural foundation of how 5-HT6R specifically recognizes agonists and elucidating the molecular process of G protein activation, our discoveries offer valuable insights and pave the way for the development of promising 5-HT6R agonists.


Subject(s)
Receptors, Serotonin , Serotonin , Humans , Cryoelectron Microscopy , Receptors, Serotonin/metabolism , Indoles
2.
Science ; 380(6640): eadd6220, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36862765

ABSTRACT

Individual free fatty acids (FAs) play important roles in metabolic homeostasis, many through engagement with more than 40G protein-coupled receptors. Searching for receptors to sense beneficial omega-3 FAs of fish oil enabled the identification of GPR120, which is involved in a spectrum of metabolic diseases. Here, we report six cryo-electron microscopy structures of GPR120 in complex with FA hormones or TUG891 and Gi or Giq trimers. Aromatic residues inside the GPR120 ligand pocket were responsible for recognizing different double-bond positions of these FAs and connect ligand recognition to distinct effector coupling. We also investigated synthetic ligand selectivity and the structural basis of missense single-nucleotide polymorphisms. We reveal how GPR120 differentiates rigid double bonds and flexible single bonds. The knowledge gleaned here may facilitate rational drug design targeting to GPR120.


Subject(s)
Drug Design , Fatty Acids, Omega-3 , Receptors, G-Protein-Coupled , Cryoelectron Microscopy , Ligands , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/metabolism , Humans , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Phenylpropionates/chemistry , Phenylpropionates/pharmacology , Protein Conformation , Eicosapentaenoic Acid/chemistry , Eicosapentaenoic Acid/metabolism , Mutation, Missense , Polymorphism, Single Nucleotide
3.
Nature ; 604(7907): 771-778, 2022 04.
Article in English | MEDLINE | ID: mdl-35418677

ABSTRACT

Adhesion G protein-coupled receptors (aGPCRs) constitute an evolutionarily ancient family of receptors that often undergo autoproteolysis to produce α and ß subunits1-3. A tethered agonism mediated by the 'Stachel sequence' of the ß subunit has been proposed to have central roles in aGPCR activation4-6. Here we present three cryo-electron microscopy structures of aGPCRs coupled to the Gs heterotrimer. Two of these aGPCRs are activated by tethered Stachel sequences-the ADGRG2-ß-Gs complex and the ADGRG4-ß-Gs complex (in which ß indicates the ß subunit of the aGPCR)-and the other is the full-length ADGRG2 in complex with the exogenous ADGRG2 Stachel-sequence-derived peptide agonist IP15 (ADGRG2(FL)-IP15-Gs). The Stachel sequences of both ADGRG2-ß and ADGRG4-ß assume a U shape and insert deeply into the seven-transmembrane bundles. Constituting the FXφφφXφ motif (in which φ represents a hydrophobic residue), five residues of ADGRG2-ß or ADGRG4-ß extend like fingers to mediate binding to the seven-transmembrane domain and activation of the receptor. The structure of the ADGRG2(FL)-IP15-Gs complex reveals the structural basis for the improved binding affinity of IP15 compared with VPM-p15 and indicates that rational design of peptidic agonists could be achieved by exploiting aGPCR-ß structures. By converting the 'finger residues' to acidic residues, we develop a method to generate peptidic antagonists towards several aGPCRs. Collectively, our study provides structural and biochemical insights into the tethered activation mechanism of aGPCRs.


Subject(s)
Peptides , Receptors, G-Protein-Coupled , Cryoelectron Microscopy , Humans , Peptides/metabolism , Protein Domains , Receptors, G-Protein-Coupled/metabolism
4.
Chem Commun (Camb) ; 50(67): 9477-80, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25007971

ABSTRACT

A bis-alkynylplatinum(II) terpyridine tweezer-alkynylgold(III) diphenylpyridine guest is shown to maintain the specific complexation in the presence of a B21C7-secondary ammonium salt recognition motif, which facilitates the formation of supramolecular hyperbranched polymers via the "tweezering directed self-assembly" strategy.


Subject(s)
Organoplatinum Compounds/chemistry , Polymers/chemistry , Pyridines/chemistry , Models, Molecular , Molecular Conformation , Polymerization
5.
Angew Chem Int Ed Engl ; 53(24): 6090-4, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24810864

ABSTRACT

Supramolecular polymers are constructed based on the novel bis[alkynylplatinum(II)] terpyridine molecular tweezer/pyrene recognition motif. Successive addition of anthracene as the diene and cyano-functionalized dienophile triggers the reversible supramolecular polymerization process, thus advancing the concept of utilizing Diels-Alder chemistry to access stimuli-responsive materials in compartmentalized systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...