Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 275(Pt 2): 133517, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960251

ABSTRACT

Reducing the risk of wound infection is an urgent issue health priority. Antibacterial polysaccharide-based hydrogels have attracted great attention for infectious wounds, attributed to their safe antimicrobial performance and natural non-toxicity and biodegradability advantages. In this study, the "all-in-one" self-adaptive and injectable cationic guar gum (CG)-based polysaccharide hydrogels (FA-TOB/CG) loaded with bioactive complexes were developed for infectious wound healing. The constructed antioxidant and antibacterial ferulic acid (FA)-tobramycin (TOB) bioactive complexes (FA-TOB) were used as the cross-linking agent and introduced into the CG matrix to construct the FA-TOB/CG hydrogel with a three-dimensional porous structure. The sterilization rates of FA-TOB/CG hydrogel against S. aureus and E. coli reached 98 % and 80 % respectively. In addition, the FA-TOB/CG also exhibits enhanced antioxidant performances (DPPH: > 40 %; ABTS: > 90 %; ·OH: > 50 %). More importantly, FA-TOB/CG hydrogel also showed the ability to sustain the release of FA and TOB. These superiorities of the FA-TOB/CG hydrogel enabled it to provide a moist wound environment and promote wound healing by eliminating bacteria, modulating the local inflammatory response, and accelerating collagen deposition and vascular regeneration. Thus, this study may enlarge a new sight for developing multifunctional dressings by incorporating bioactive complexes into polysaccharide hydrogels for infected wounds.

2.
Int J Biol Macromol ; 264(Pt 2): 130741, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460649

ABSTRACT

Treatment of diabetic wounds is a major clinical issue. Diabetic wound dressings have higher requirements for anti-oxidant, antibacterial and wound monitoring properties compared to conventional wound dressings. In this study, a novel tannic acid (TA)/quaternized carboxymethyl chitosan (QCMCS)/oxidized sodium alginate (OSA)@carbon quantum dots (CQD) (TA/QCMCS/OSA@CQD) hydrogels for promoting diabetic wound healing and real-time monitoring have been developed. The TA/QCMCS/OSA@CQD hydrogels exhibited excellent self-healing, antibacterial and antioxidant properties. Besides, these hydrogels possessed good biocompatibility and effective hemostasis in a mouse liver injury model and significantly facilitated the healing process in a diabetic wound model. In addition, these hydrogels can reliable and timely measure the diabetic wound pH information by collecting image signals of hydrogels to monitor the healing status. Therefore, the pH responsive TA/QCMCS/OSA@CQD hydrogels could be utilized as wound dressing for promoting diabetic wound healing and real-time monitoring.


Subject(s)
Chitosan , Diabetes Mellitus , Polyphenols , Animals , Mice , Alginates , Anti-Bacterial Agents , Antioxidants , Carbon , Disease Models, Animal , Hydrogels , Hydrogen-Ion Concentration
3.
ACS Nano ; 18(8): 6348-6358, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38314696

ABSTRACT

The advancement in thin-film exfoliation for synthesizing oxide membranes has led to possibilities for creating artificially assembled heterostructures with structurally and chemically incompatible materials. The sacrificial layer method is a promising approach to exfoliate as-grown films from a compatible material system, allowing for their integration with dissimilar materials. Nonetheless, the conventional sacrificial layers often possess an intricate stoichiometry, thereby constraining their practicality and adaptability, particularly when considering techniques such as molecular beam epitaxy (MBE). This is where easy-to-grow binary alkaline-earth-metal oxides with a rock salt crystal structure are useful. These oxides, which include (Mg, Ca, Sr, Ba)O, can be used as a sacrificial layer covering a much broader range of lattice parameters compared to conventional sacrificial layers and are easily dissolvable in deionized water. In this study, we show the epitaxial growth of the single-crystalline perovskite SrTiO3 (STO) on sacrificial layers consisting of crystalline SrO, BaO, and Ba1-xCaxO films, employing a hybrid MBE method. Our results highlight the rapid (≤5 min) dissolution of the sacrificial layer when immersed in deionized water, facilitating the fabrication of millimeter-sized STO membranes. Using high-resolution X-ray diffraction, atomic-force microscopy, scanning transmission electron microscopy, impedance spectroscopy, and scattering-type near-field optical microscopy (SNOM), we demonstrate single-crystalline STO membranes with bulk-like intrinsic dielectric properties. The employment of alkaline earth metal oxides as sacrificial layers is likely to simplify membrane synthesis, particularly with MBE, thus expanding the research and application possibilities.

4.
Photoacoustics ; 33: 100559, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38021287

ABSTRACT

A ppbv-level mid-infrared photoacoustic spectroscopy sensor was developed for mouth alcohol tests. A compact CO2 laser with a sealed waveguide and integrated radio frequency (RF) power supply was used. The emission wavelength is ∼9.3 µm with a power of 10 W. A detection limit of ∼18 ppbv (1σ) for ethanol gas with an integration of 1 s was achieved. The sensor performed a linear dynamic range with an R square value of ∼0.999. A breath measurement experiment after consuming lychees was conducted. The photoacoustic signal amplitude decreased with the quality of lychee consumed, confirming the existence of residual alcohol in the mouth. During continuous measurement, the photoacoustic signal decreased in < 10 min when consuming 30 g lychee fruits, proving that the alcohol detected in exhaled breath originated from the oral cavity rather than the bloodstream. This work provided valuable information on the distinction of alcoholism and crime.

5.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(3): 442-449, 2023 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-37380382

ABSTRACT

The causes of mental disorders are complex, and early recognition and early intervention are recognized as effective way to avoid irreversible brain damage over time. The existing computer-aided recognition methods mostly focus on multimodal data fusion, ignoring the asynchronous acquisition problem of multimodal data. For this reason, this paper proposes a framework of mental disorder recognition based on visibility graph (VG) to solve the problem of asynchronous data acquisition. First, time series electroencephalograms (EEG) data are mapped to spatial visibility graph. Then, an improved auto regressive model is used to accurately calculate the temporal EEG data features, and reasonably select the spatial metric features by analyzing the spatiotemporal mapping relationship. Finally, on the basis of spatiotemporal information complementarity, different contribution coefficients are assigned to each spatiotemporal feature and to explore the maximum potential of feature so as to make decisions. The results of controlled experiments show that the method in this paper can effectively improve the recognition accuracy of mental disorders. Taking Alzheimer's disease and depression as examples, the highest recognition rates are 93.73% and 90.35%, respectively. In summary, the results of this paper provide an effective computer-aided tool for rapid clinical diagnosis of mental disorders.


Subject(s)
Alzheimer Disease , Brain Injuries , Mental Disorders , Humans , Mental Disorders/diagnosis , Alzheimer Disease/diagnosis , Electroencephalography , Recognition, Psychology
6.
Opt Lett ; 48(7): 1678-1681, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37221739

ABSTRACT

In this work, Helmholtz-resonator quartz-enhanced photoacoustic spectroscopy (HR-QEPAS) was developed for trace gas sensing. A pair of Helmholtz resonators with high-order resonance frequency was designed and coupled with a quartz tuning fork (QTF). Detailed theoretical analysis and experimental research were carried out to optimize the HR-QEPAS performance. As a proof-of-concept experiment, the water vapor in the ambient air was detected using a 1.39 µm near-infrared laser diode. Benefiting from the acoustic filtering of the Helmholtz resonance, the noise level of QEPAS was reduced by >30%, making the QEPAS sensor immune to environmental noise. In addition, the photoacoustic signal amplitude was improved significantly by >1 order of magnitude. As a result, the detection signal-to-noise ratio was enhanced by >20 times, compared with a bare QTF.

7.
Nat Nanotechnol ; 18(9): 1005-1011, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37217765

ABSTRACT

The oxides of platinum group metals are promising for future electronics and spintronics due to the delicate interplay of spin-orbit coupling and electron correlation energies. However, their synthesis as thin films remains challenging due to their low vapour pressures and low oxidation potentials. Here we show how epitaxial strain can be used as a control knob to enhance metal oxidation. Using Ir as an example, we demonstrate the use of epitaxial strain in engineering its oxidation chemistry, enabling phase-pure Ir or IrO2 films despite using identical growth conditions. The observations are explained using a density-functional-theory-based modified formation enthalpy framework, which highlights the important role of metal-substrate epitaxial strain in governing the oxide formation enthalpy. We also validate the generality of this principle by demonstrating epitaxial strain effect on Ru oxidation. The IrO2 films studied in our work further revealed quantum oscillations, attesting to the excellent film quality. The epitaxial strain approach we present could enable growth of oxide films of hard-to-oxidize elements using strain engineering.

8.
Opt Lett ; 48(3): 562-565, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36723531

ABSTRACT

In this Letter, a side-excitation light-induced thermoelastic spectroscopy (SE-LITES) technique was developed for trace gas detection. A novel, to the best of our knowledge, custom quartz tuning fork (QTF) was used as a transducer for photon detection by the thermoelastic effect. The mechanical stress distribution on the QTF surface was analyzed to identify the optimum thermoelastic excitation approach. The electrode film on the QTF surface also works as a partially reflective layer to obtain a long optical absorption path inside the QTF body. With the long optical absorption length and the inner face excitation of the QTF, the thermoelastic effect was greatly enhanced. With an optimized modulation depth, a signal-to-noise ratio (SNR) improvement of more than one order of magnitude was achieved, compared to traditional LITES.

9.
Comput Methods Programs Biomed ; 226: 107113, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36103735

ABSTRACT

BACKGROUND AND OBJECTIVE: In view of the depression characteristics such as high prevalence, high disability rate, high fatality rate, and high recurrence rate, early identification and early intervention are the most effective methods to prevent irreversible damage of brain function over time. The traditional method of depression recognition based on questionnaires and interviews is time-consuming and labor-intensive, and heavily depends on the doctor's subjective experience. Therefore, accurate, convenient and effective recognition of depression has important social value and scientific significance. METHODS: This paper proposes a depression recognition framework based on feature-level fusion of spatial-temporal pervasive electroencephalography (EEG). Time series EEG data were collected by portable three-electrode EEG acquisition instrument, and mapped to a spatial complex network called visibility graph (VG). Then temporal EEG features and spatial VG metric features were extracted and selected. Based on the correlation between features and categories, the differences in contribution of individual feature are explored, and different contribution coefficients are assigned to different features as the data basis of feature-level fusion to ensure the diversity of data. A cascade forest model based on three different decision forests is designed to realize the efficient depression recognition using spatial-temporal feature-level fusion data. RESULTS: Experimental data were obtained from 26 depressed patients and 29 healthy controls (HC). The results of multiple control experiments show that compared with single type feature, feature-level fusion without contribution coefficient, and independent classifiers, the feature-level method with contribution coefficient of spatial-temporal has a stronger recognition ability of depression, and the highest accuracy is 92.48%. CONCLUSION: Feature-level fusion method provides an effective computer-aided tool for rapid clinical diagnosis of depression.


Subject(s)
Algorithms , Depression , Humans , Depression/diagnosis , Electroencephalography/methods , Electrodes , Time Factors
10.
Molecules ; 27(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35807564

ABSTRACT

Spider silk is one of the hottest biomaterials researched currently, due to its excellent mechanical properties. This work reports a novel humidity sensing platform based on a spider silk-modified quartz tuning fork (SSM-QTF). Since spider silk is a kind of natural moisture-sensitive material, it does not demand additional sensitization. Quartz-enhanced conductance spectroscopy (QECS) was combined with the SSM-QTF to access humidity sensing sensitively. The results indicate that the resonance frequency of the SSM-QTF decreased monotonously with the ambient humidity. The detection sensitivity of the proposed SSM-QTF sensor was 12.7 ppm at 1 min. The SSM-QTF sensor showed good linearity of ~0.99. Using this sensor, we successfully measured the humidity of disposable medical masks for different periods of wearing time. The results showed that even a 20 min wearing time can lead to a >70% humidity in the mask enclosed space. It is suggested that a disposable medical mask should be changed <2 h.


Subject(s)
Quartz , Silk , Humidity , Quartz/chemistry , Spectrum Analysis/methods
11.
Proc Natl Acad Sci U S A ; 119(23): e2202189119, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35653574

ABSTRACT

SignificanceSemiconductor interfaces are among the most important in use in modern technology. The properties they exhibit can either enable or disable the characteristics of the materials they connect for functional performance. While much is known about important junctions involving conventional semiconductors such as Si and GaAs, there are several unsolved mysteries surrounding interfaces between oxide semiconductors. Here we resolve a long-standing issue concerning the measurement of anomalously low dielectric constants in SrTiO3 films with record high electron mobilities. We show that the junction between doped and undoped SrTiO3 required to make dielectric constant measurements masks the dielectric properties of the undoped film. Through modeling, we extract the latter and show that it is much higher than previously measured.

12.
Biomater Adv ; 134: 112591, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35527161

ABSTRACT

Improving antibacterial performance is one of the prerequisites for the clinical application of bacterial cellulose (BC)-based dressings. In this study, a novel copper (Cu) ion loaded BC-based antibacterial wound dressing was prepared via codeposition of polydopamine (PDA) and copper ion. The scanning electron microscope (SEM) results showed that the copper ion/PDA coating was more uniform than the PDA coating, and the 3D nanopore structure of BC was retained in Cu2+@PBC. Cu ions were immobilized by forming a chelate with PDA. The thermal stability and mechanical properties of the Cu2+@PBC dressing decreased with the addition of copper ions. Cu2+@PBC-2 film with a certain amount of copper sulfate used (10 nM) exhibited favorable antibacterial properties against both S. aureus and E. coli without obvious cytotoxicity. The results of the in vivo study also demonstrated that the Cu2+@PBC-2 film can eliminate S. aureus infections and inflammatory response, promote collagen deposition, capillary angiogenesis, hair follicle growth and wound healing. These results suggest that the Cu2+@PBC-2 film has prospective application as a wound dressing.


Subject(s)
Cellulose , Copper , Anti-Bacterial Agents/pharmacology , Bandages , Cellulose/pharmacology , Copper/pharmacology , Escherichia coli , Indoles , Microbial Sensitivity Tests , Polymers , Staphylococcus aureus , Sulfates
13.
Bioact Mater ; 13: 212-222, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35224303

ABSTRACT

The treatment and healing of infected skin lesions is one of the major challenges in surgery. To solve this problem, collagen I (Col-I) and the antibacterial agent hydroxypropyltrimethyl ammonium chloride chitosan (HACC) were composited into the bacterial cellulose (BC) three-dimensional network structure by a novel membrane-liquid interface (MLI) culture, and a Col-I/HACC/BC (CHBC) multifunctional dressing was designed. The water absorption rate and water vapor transmission rate of the obtained CHBC dressing were 35.78 ± 2.45 g/g and 3084 ± 56 g m-2·day-1, respectively. The water retention of the CHBC dressing was significantly improved compared with the BC caused by the introduced Col-I and HACC. In vitro results indicated that the combined advantages of HACC and Col-I confer on CHBC dressings not only have outstanding antibacterial properties against Staphylococcus aureus (S. aureus) compared with BC and CBC, but also exhibit better cytocompatibility than BC and HBC to promote the proliferation and spread of NIH3T3 cells and HUVECs. Most importantly, the results of in vivo animal tests demonstrated that the CHBC dressings fully promoted wound healing for 8 days and exhibited shorter healing times, especially in the case of wound infection. Excellent skin regeneration effects and higher expression levels of collagen during infection were also shown in the CHBC group. We believe that CHBC composites with favorable multifunctionality have potential applications as wound dressings to treat infected wounds.

14.
Opt Express ; 30(4): 6320-6331, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209572

ABSTRACT

A high-power near-infrared (NIR) quartz enhanced photoacoustic spectroscopy (QEPAS) sensor for part per billion (ppb) level acetylene (C2H2) detection was reported. A 1536 nm distributed feedback (DFB) diode laser was used as the excitation light source. Cooperated with the laser, a C-band 10 W erbium-doped fiber amplifier (EDFA) was employed to boost the optical excitation power to improve QEPAS detection sensitivity. A pilot line manufactured quartz tuning fork (QTF) with a resonance frequency of 28 kHz was used as the photoacoustic transducer. In the case of high excitation power, gas flow effect and temperature effect were found and studied. Benefitting from the low QTF resonance frequency, high excitation power, and vibrational-translational (V-T) relaxation promoter, a detection limit of ∼7 ppb was achieved for C2H2 detection, corresponding to a normalized noise equivalent absorption coefficient of 4.4×10-8cm-1 · W · Hz-1/2.

15.
Opt Lett ; 46(16): 3917-3920, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34388774

ABSTRACT

Radial-cavity quartz-enhanced photoacoustic spectroscopy (RC-QEPAS) was proposed for trace gas analysis. A radial cavity with (0,0,1) resonance mode was coupled with the quartz tuning fork (QTF) to greatly enhance the QEPAS signal and facilitate the optical alignment. The coupled resonance enhancement effects of the radial cavity and QTF were analyzed theoretically and researched experimentally. With an optimized radial cavity, the detection sensitivity of QEPAS was enhanced by >1 order of magnitude. The RC-QEPAS makes the acoustic detection module more compact and optical alignment comparable with a bare QFT, benefiting the usage of light sources with poor beam quality.

16.
Carbohydr Polym ; 258: 117683, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33593556

ABSTRACT

As a mild cationic antibacterial agent, hydroxypropyltrimethyl ammonium chloride chitosan (HACC) could kill gram-positive bacteria and gram-positive drug-resistant bacteria without cytotoxicity. Nevertheless, it was not effective against gram-negative bacteria. Herein, protocatechuic acid (PA) with broad-spectrum antibacterial properties and pharmacological activities was grafted on HACC. PA-g-HACC showed favourable antioxidant capacity and anti-inflammatory properties. Most importantly, the results of antibacterial assay indicated that the antibacterial rates of all PA-g-HACC groups against Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus aureus (MRSA) were above 92 %, and the antibacterial rate of PA-g-HACC against E. coli was increased with the amount of grafted PA. Furthermore, the cytocompatibility of PA-g-HACC was improved by appropriate grafting ratio of PA, while excessive grafted PA can lead to toxicity. We believe that PA-g-HACC in optimum grafting ratio of PA with favorable antibacterial properties, pharmacological activities and cytocompatibility will be potential antibacterial agent for treating infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Drug Design , Hydroxybenzoates/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Biofilms/drug effects , Biphenyl Compounds , Chemistry, Pharmaceutical/methods , Enzyme-Linked Immunosorbent Assay , Escherichia coli/drug effects , Inflammation , Magnetic Resonance Spectroscopy , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Microbial Sensitivity Tests , NIH 3T3 Cells , Picrates , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , X-Ray Diffraction
17.
Article in English | MEDLINE | ID: mdl-33296307

ABSTRACT

If the brain is regarded as a system, it will be one of the most complex systems in the universe. Traditional analysis and classification methods of major depressive disorder (MDD) based on electroencephalography (EEG) feature-levels often regard electrode as isolated node and ignore the correlation between them, so it's difficult to find alters of abnormal topological architecture in brain. To solve this problem, we propose a brain functional network framework for MDD of analysis and classification based on resting state EEG. The phase lag index (PLI) was calculated based on the 64-channel resting state EEG to construct the function connection matrix to reduce and avoid the volume conductor effect. Then binarization of brain function network based on small world index was realized. Statistical analyses were performed on different EEG frequency band and different brain regions. The results showed that significant alterations of brain synchronization occurred in frontal, temporal, parietal-occipital regions of left brain and temporal region of right brain. And average shortest path length and clustering coefficient in left central region of theta band and node betweenness centrality in right parietal-occipital region were significantly correlated with PHQ-9 score of MDD, which indicates these three network metrics may be served as potential biomarkers to effectively distinguish MDD from controls and the highest classification accuracy can reach 93.31%. Our findings also point out that the brain function network of MDD patients shows a random trend, and small world characteristics appears to weaken.


Subject(s)
Depressive Disorder, Major , Brain , Brain Mapping , Electroencephalography , Humans , Occipital Lobe
SELECTION OF CITATIONS
SEARCH DETAIL
...