Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(16): 9933-9943, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35424958

ABSTRACT

Owing to the large dynamic adsorption performance and excellent mechanical strength, spherical activated carbon (SAC) has been widely applied in the field of biochemical protection. However, the adsorbed chemical warfare agent molecules might easily escape from the pores of SAC due to the impact of ambient temperature and humidity, resulting in secondary pollution. Herein, to improve the adsorption performance of SAC, an excessive impregnation method was used to fabricate nano-silver functionalized spherical activated carbon (Ag-SAC). The surface physicochemical structure of the obtained Ag-SAC was extensively studied, and dipropyl sulfide (DPS), a simulant of sulfur mustard (HD), was employed as the adsorbate to evaluate its adsorption capability. The effects of AgNO3 impregnation concentration, reaction time, initial concentration and temperature on the adsorption performance, were investigated. The equilibrium adsorption capacity of Ag-SAC towards DPS increased by 13.41% compared with that of pristine SAC. Kinetic models, adsorption isotherm models, and adsorption thermodynamics were used to study the adsorption mechanism. The results revealed that the adsorption of DPS by Ag-SAC is a mixed synergistic process, which includes chemical adsorption and physical adsorption. Moreover, the Ag-SAC exhibited good antibacterial characteristics, with an antibacterial rate over 99.28% against Escherichia coli. We anticipate that the Ag-SAC could be a promising material for the development of high performance breathable biochemical protection clothing.

2.
Materials (Basel) ; 12(24)2019 Dec 08.
Article in English | MEDLINE | ID: mdl-31817989

ABSTRACT

Graphene-based three-dimensional (3D) magnetic assemblies have attracted great research attention owing to their multiple natures inherited from 3D graphene assemblies and magnetic materials. However, at present, the practical applications of graphene-based magnetic materials are limited by the relative complex synthesis procedure and harsh operation conditions. Hence, a facile and green synthesis strategy is highly desired. Herein, a magnetic graphene aerogel with magnetite nanoparticles in-situ synthesized on the surface of its frameworks was fabricated through a green and facile strategy. The synthesis process was performed in a gentle condition with low energy consumption. The obtained graphene aerogels exhibited superior magnetism with a saturation magnetization of 55.7 emu·g-1. With the merits of well-developed pore structures, high surface area, and robust magnetic property, the obtained composite aerogels exhibited intriguing adsorption and photo-Fenton catalytic degradation performances for the organic dyes in water. Moreover, the utilized graphene aerogels could be recycled from the water due to their effective magnetic separation performance, indicating a promising capability for practical applications in the area of water remediation. We anticipate this synthesis strategy could provide some guidance for the design and development of 3D magnetic assemblies.

SELECTION OF CITATIONS
SEARCH DETAIL
...