Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(19)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38306686

ABSTRACT

Piezoresistive layered two-dimensional (2D) crystals offer intriguing promise as pressure sensors for microelectromechanical systems (MEMS) due to their remarkable strain-induced conductivity modulation. However, integration of the conventional chemical vapor deposition grown 2D thin films onto a micromachined silicon platform requires a complex transfer process, which degrades their strain-sensing performance. In this study, we present a differential pressure sensor built on a transfer-free piezoresistive PdSe2polycrystalline film deposited on a SiNxmembrane by plasma-enhanced selenization of a metal film at a temperature as low as 200 °C. Based on the resistance change and finite element strain analysis of the film under membrane deflection, we show that a 7.9 nm thick PdSe2film has a gauge factor (GF) of -43.3, which is ten times larger than that of polycrystalline silicon. The large GF enables the development of a diaphragm pressure sensor with a high sensitivity of 3.9 × 10-4kPa-1within the differential pressure range of 0-60 kPa. In addition, the sensor with a Wheatstone bridge circuit achieves a high voltage sensitivity of 1.04 mV·kPa-1, a rapid response time of less than 97 ms, and small output voltage variation of 8.1 mV in the temperature range of 25 °C to 55 °C. This transfer-free and low-temperature grown PdSe2piezoresistive thin film is promising for MEMS transducer devices.

2.
Opt Express ; 31(14): 23598-23607, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475440

ABSTRACT

We present an optical proximity correction (OPC) method based on a genetic algorithm for reducing the optical proximity effect-induced pattern distortion in digital micromirror device (DMD) maskless lithography. Via this algorithm-assisted grayscale modulation of the initial mask at the pixel level, the exposure pattern can be enhanced significantly. Actual exposure experiments revealed that the rate of matching between the final exposure pattern and the mask pattern can be increased by up to 20%. This method's applicability to complex masks further demonstrates its universality for mask pattern optimization. We believe that our algorithm-assisted OPC could be highly helpful for high-fidelity and efficient DMD maskless lithography for microfabrication.

3.
Molecules ; 28(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37049642

ABSTRACT

The rational design of morphology and structure for oxygen reduction reaction (ORR) catalysts still remains a critical challenge. Herein, we successfully construct defect-rich and hierarchically porous Fe-N-C nanosheets (Fe-N-CNSs), by taking advantage of metal-organic complexation and a mesoporous template. Benefiting from the advantages of high density of active sites, fast mass transfer channels, and sufficient reaction area, the optimal Fe-N-CNSs demonstrate satisfactory ORR activity with an excellent half-wave potential of up to 0.87 V, desirable durability, and robust methanol tolerance. Noteworthy, the Fe-N-CNSs based zinc-air battery shows significant performance with a peak power density of 128.20 mW cm-2 and open circuit voltage of 1.53 V, which reveals that the Fe-N-CNSs catalysts present promising practical application prospects. Therefore, we believe that this research will provide guidance for the optimization of Fe-N-C materials.

4.
Langmuir ; 35(20): 6578-6584, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31045371

ABSTRACT

The electrocoalescence of droplets plays a crucial role in various fields. However, studies on the effects of droplet radius on the electrocoalescence behaviors of droplets have not been conducted until now. In this work, the electrocoalescence behaviors of two unequally sized conducting droplets are investigated via molecular dynamics (MD) simulations. The influences of electric field strength and droplet radius on the electrocoalescence behaviors of two unequally sized droplets are investigated. When the electric field strength increases, the contact cone angle between the droplets increases, and the two droplets are more likely to partially coalesce and bounce. When the radius of the smaller droplet between the two droplets increases at the same electric field strength, the contact cone angle, daughter droplet size, and ions in the daughter droplet increase, whereas the critical electric field strength ( Ed) for generating the daughter droplet decreases. Furthermore, the daughter droplet is ejected from the smaller droplet when the two droplets have different radii.

5.
Toxins (Basel) ; 9(5)2017 05 18.
Article in English | MEDLINE | ID: mdl-28524096

ABSTRACT

Ochratoxin A (OTA) is one of the most common and dangerous mycotoxins in the world. Previous work indicated that OTA could elicit spontaneous HR-like lesions formation Arabidopsis thaliana, reactive oxygen species (ROS) play an important role in OTA toxicity, and their major endogenous source is mitochondria. However, there has been no evidence as to whether OTA induces directly PCD in plants until now. In this study, the presence of OTA in Arabidopsisthaliana leaves triggered accelerated respiration, increased production of mitochondrial ROS, the opening of ROS-dependent mitochondrial permeability transition pores and a decrease in mitochondrial membrane potential as well as the release of cytochrome c into the cytosol. There were 42 and 43 significantly differentially expressed proteins identified in response to exposure to OTA for 8 and 24 h, respectively, according to iTRAQ analysis. These proteins were mainly involved in perturbation of the mitochondrial electron transport chain, interfering with ATP synthesis and inducing PCD. Digital gene expression data at transcriptional level was consistent with the cell death induced by OTA being PCD. These results indicated that mitochondrial dysfunction was a prerequisite for OTA-induced PCD and the initiation and execution of PCD via a mitochondrial-mediated pathway.


Subject(s)
Apoptosis/drug effects , Arabidopsis/drug effects , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Ochratoxins/toxicity , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , DNA Damage , Gene Expression Regulation, Plant/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/physiology , Mitochondrial Proteins/genetics , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Proteomics , Reactive Oxygen Species/metabolism
6.
Plant Cell Rep ; 34(5): 705-19, 2015 May.
Article in English | MEDLINE | ID: mdl-25666274

ABSTRACT

KEY MESSAGE: OTA-producing strain Aspergillus ochraceus induced necrotic lesions, ROS accumulation and defense responses in Arabidopsis . Primary metabolic and defense-related proteins changed in proteomics. Ascorbate-glutathione cycle and voltage-dependent anion-selective channel proteins fluctuated. Mycotoxigenic fungi, as widespread contaminants by synthesizing mycotoxins in pre-/post-harvest infected plants and even stored commercial cereals, could usually induce plant-fungi defense responses. Notably, ochratoxin A (OTA) is a nephrotoxic, hepatotoxic, teratogenic, immunotoxic and phytotoxic mycotoxin. Herein, defense responses of model system Arabidopsis thaliana detached leaves to infection of Aspergillus ochraceus 3.4412, an OTA high-producing strain, were studied from physiological, proteomic and transcriptional perspectives. During the first 72 h after inoculation (hai), the newly formed hypersensitive responses-like lesions, decreased chlorophyll content, accumulated reactive oxygen species and upregulated defense genes expressions indicated the defense response was induced in the leaves with the possible earlier motivated jasmonic acid/ethylene signaling pathways and the later salicylic acid-related pathway. Moreover, proteomics using two-dimensional gel electrophoresis 72 hai showed 16 spots with significantly changed abundance and 13 spots corresponding to 12 unique proteins were successfully identified by MALDI-TOF/TOF MS/MS. Of these, six proteins were involved in basic metabolism and four in defense-related processes, which included glutathione-S-transferase F7, voltage-dependent anion-selective channel protein 3 (VDAC-3), osmotin-like protein OSM34 and blue copper-binding protein. Verified from proteomic and/or transcriptional perspectives, it is concluded that the primary metabolic pathways were suppressed with the ascorbate-glutathione cycle fluctuated in response to A. ochraceus and the modulation of VDACs suggested the possibility of structural damage and dysfunction of mitochondria in the process. Taken together, these findings exhibited a dynamic overview of the defense responses of A. thaliana to A. ochraceus and provided a better insight into the pathogen-resistance mechanisms in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Aspergillus ochraceus/physiology , Gene Expression Regulation, Plant , Ochratoxins/metabolism , Plant Diseases/immunology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Aspergillus ochraceus/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chlorophyll/metabolism , Cyclopentanes/metabolism , Electrophoresis, Gel, Two-Dimensional , Oxylipins/metabolism , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/physiology , Proteomics , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism , Signal Transduction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
7.
Plant Physiol Biochem ; 79: 10-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24662377

ABSTRACT

Ochratoxin A (OTA) is one of the most toxic mycotoxins, which is toxic to plants and simulates oxidative stress. Glutathione is an important antioxidant in plants and is closely associated with detoxification in cells. We have previously shown that OTA exposure induces obvious expression differences in genes associated with glutathione metabolism. To characterize glutathione metabolism and understand its role in OTA phytotoxicity, we observed the accumulation of GSH in the detached leaves of Arabidopsis thaliana under OTA treatment. OTA stimulated a defense response through enhancing glutathione-S-transferase, glutathione peroxidase, glutathione reductase activities, and the transcript levels of these enzymes were increased to maintain the total glutathione content. Moreover, the level of oxidized glutathione (GSSG) was increased and the ascorbate-glutathione cycle fluctuated in response to OTA. The depletion of glutathione using buthionine sulfoximine (BSO, inhibitor of glutamate-cysteine ligase) had no profound effect on OTA toxicity, as glutathione was regenerated through the ascorbate-glutathione cycle to maintain the total glutathione content. The ROS, MDA and GSH accumulation was significantly affected in the mutant gsh1, gr1 and gpx2 after treatment with OTA, which indicated that glutathione metabolism is directly involved in the oxidative stress response of Arabidopsis thaliana subjected to OTA. In conclusion, date demonstrate that glutathione-associated metabolism is closely related with OTA stress and glutathione play a role in resistance of Arabidopsis subjected to OTA.


Subject(s)
Arabidopsis/drug effects , Arabidopsis/metabolism , Glutathione/metabolism , Ochratoxins/pharmacology , Arabidopsis/enzymology , Buthionine Sulfoximine , Glutathione Disulfide/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects
8.
Plant Mol Biol ; 82(4-5): 321-37, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23625346

ABSTRACT

Ochratoxin A (OTA) is a mycotoxin that is primarily produced by Aspergillus ochraceus and Penicillium verrucosum. This mycotoxin is a contaminant of food and feedstock worldwide and may induce cell death in plants. To investigate the dynamic growth process of Arabidopsis seedlings in response to OTA stress and to obtain a better understanding of the mechanism of OTA toxicity towards Arabidopsis, a comparative proteomics study using 2-DE and MALDI-TOF/TOF MS/MS was performed. Mass spectrometry analysis identified 59 and 51 differentially expressed proteins in seedlings exposed to 25 and 45 µM OTA for 7 days, respectively. OTA treatment decreased root elongation and leaf area, increased anthocyanin accumulation, damaged the photosynthetic apparatus and inhibited photosynthesis. Treatment of the seedlings with 25 µM OTA enhanced energy metabolism, whereas higher concentration of OTA (45 µM) inhibited energy metabolism in the seedlings. OTA treatment caused an increase of ROS, an enhancement of antioxidant enzyme defense responses, disturbance of redox homeostasis and activation of lipid oxidation. Glutamine and S-adenosylmethionine metabolism may also play important roles in the response to OTA. In conclusion, our study provided novel insights regarding the response of Arabidopsis to OTA at the level of the proteome. These results are expected to be highly useful for understanding the physiological responses and dissecting the OTA response pathways in higher plants.


Subject(s)
Arabidopsis/drug effects , Arabidopsis/metabolism , Ochratoxins/pharmacology , Proteomics/methods , Seedlings/drug effects , Seedlings/metabolism , Arabidopsis Proteins/metabolism , Electrophoresis, Gel, Two-Dimensional , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...