Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
J Exp Bot ; 69(8): 1903-1912, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29432591

ABSTRACT

Hevea brasiliensis is a key commercial source of natural rubber (cis 1,4-polyisoprene). In H. brasiliensis, rubber transferase is responsible for cis-1,4-polymerization of isoprene units from isopentenyl diphosphate and thus affects the yield of rubber. Little is known about the regulatory mechanisms of the rubber transferase gene at a molecular level. In this study we show that the 5'UTR intron of the promoter of the rubber transferase gene (HRT2) suppresses the expression of HRT2. A H. brasiliensis RING zinc finger protein (designated as HbRZFP1) was able to interact specifically with the HRT2 promoter to down-regulate its transcription in vivo. A 14-3-3 protein (named as HbGF14a) was identified as interacting with HbRZFP1, both in yeast and in planta. Transient co-expression of HbGF14a and HbRZFP1-encoding cDNAs resulted in HbRZFP1-mediated HRT2 transcription inhibition being relieved. HbGF14a repressed the protein-DNA binding of HbRZFP1 with the HRT2 promoter in yeast. We propose a regulatory mechanism by which the binding of HbGF14a to HbRZFP1 interferes with the interaction of HbRZFP1 with the HRT2 promoter, thereby repressing the protein-DNA binding between them. This study provides new insights into the role of HbGF14a in mediating expression of the rubber transferase gene in Hevea brasiliensis.


Subject(s)
14-3-3 Proteins/metabolism , Gene Expression Regulation, Enzymologic , Hevea/metabolism , Plant Proteins/metabolism , Transferases/genetics , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/genetics , Amino Acid Sequence , Gene Expression Regulation, Plant , Hevea/chemistry , Hevea/classification , Hevea/genetics , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Promoter Regions, Genetic , Protein Binding , RING Finger Domains , Rubber/metabolism , Sequence Alignment , Transferases/chemistry , Transferases/metabolism , Zinc Fingers
2.
Zhongguo Zhong Yao Za Zhi ; 42(5): 870-874, 2017 Mar.
Article in Chinese | MEDLINE | ID: mdl-28994528

ABSTRACT

Mitochondria is the key energy source of cells and plays an important role in energy synthesis and release, and maintenance of cellular functions. As the most important active ingredients in Chinese medicine pseudo-ginseng, Panax notoginseng saponins(PNS) have pharmacological effects on protecting against thrombosis, dilating blood vessels, lowering the blood pressure, anti-inflammation, and antioxidant, etc. Domestic and foreign studies have shown that PNS participates in regulating mitochondrial energy metabolism, oxidative stress, biosynthesis, apoptosis, mitophagy and the status of membrane channels. Therefore, the mitochondria is one of the important targets of PNS. In this paper, the regulation effects of P. notoginseng saponins on mitochondria were reviewed.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Mitochondria/drug effects , Panax notoginseng/chemistry , Saponins/pharmacology , Humans
3.
Genet Mol Biol ; 39(1): 73-85, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27007901

ABSTRACT

Mago nashi (MAGO) and Y14 proteins are highly conserved among eukaryotes. In this study, we identified two MAGO (designated as HbMAGO1 andHbMAGO2) and two Y14 (designated as HbY14aand HbY14b) genes in the rubber tree (Hevea brasiliensis) genome annotation. Multiple amino acid sequence alignments predicted that HbMAGO and HbY14 proteins are structurally similar to homologous proteins from other species. Tissue-specific expression profiles showed that HbMAGO and HbY14 genes were expressed in at least one of the tissues (bark, flower, latex, leaf and root) examined. HbMAGOs and HbY14s were predominately located in the nucleus and were found to interact in yeast two-hybrid analysis (YTH) and bimolecular fluorescence complementation (BiFC) assays. HbMAGOs and HbY14s showed the highest transcription in latex and were regulated by ethylene and jasmonate. Interaction between HbMAGO2 and gp91phox (a large subunit of nicotinamide adenine dinucleotide phosphate) was identified using YTH and BiFC assays. These findings suggested that HbMAGO may be involved in the aggregation of rubber particles in H. brasiliensis.

4.
J Cancer ; 6(7): 678-85, 2015.
Article in English | MEDLINE | ID: mdl-26078799

ABSTRACT

Epithelial ovarian cancer (EOC) is the leading cause of death among gynecological malignancies and is rarely cured in the recurrent setting, mainly because of progressive chemoresistance, especially platinum resistance. In our previous studies, the platinum-resistance-related protein, annexin A3, was selected by comparative proteomics. In this study, we detected serum annexin A3 levels using a self-developed chemiluminescence immunoassay kit in a prospective EOC patient cohort. We also evaluated the capacity of serum annexin A3 levels to predict platinum resistance. Serum annexin A3 levels in healthy women exhibited a similar normal distribution (Z=0.723, P=0.673), allowing determination of a normal cutoff level of 0.11-1.45 ng/mL. Of the 89 EOC patients, 21 were platinum resistant and 68 were platinum sensitive. Residual disease after primary surgery (p=0.004) and serum annexin A3 levels (p=0.036) were both independent factors associated with platinum resistance. The AUC was 0.733 (95% confidence interval (CI), 0.627-0.823). The optimal cutoff value for serum annexin A3 levels was 2.05 ng/mL. Multivariate logistic analysis showed that expression of annexin A3 as assessed by immunohistochemistry (P=0.005) and residual tumor size (P=0.000) had a significant influence on platinum resistance. The AUC of ROC curve of annexin A3 expression by immunohistochemistry was 0.664 (95% CI, 0.554-0.763) and the cut off value was ">=moderate scores". In conclusion, we demonstrate that annexin A3 is a secreted protein that may be measured in the peripheral blood using a self-developed, chemiluminescence immunoassay kit. Serum annexin A3 levels may be a potential predictor of platinum resistance in epithelial ovarian cancer patients.

5.
Plant Cell Rep ; 34(9): 1569-78, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25987315

ABSTRACT

KEY MESSAGE: The HbCZF1 protein binds to the hmg1 promoter in yeast and this interaction was confirmed in vitro. The hmg1 promoter was activated in transgenic plants by HbCZF1. Biosynthesis of natural rubber is known to be based on the mevalonate pathway in Hevea brasiliensis. The final step in the mevalonate production is catalyzed by the branch point enzyme, 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGR), which shunts HMG-CoA into the isoprenoid pathway, leading to the synthesis of natural rubber. However, molecular regulation of HMGR expression is not known. To study the transcriptional regulation of HMGR, the yeast one-hybrid experiment was performed to screen the latex cDNA library using the hmg1 (one of the three HMGR in H. brasiliensis) promoter as bait. One cDNA that encodes the CCCH-type zinc finger protein, designated as HbCZF1, was isolated from H. brasiliensis. HbCZF1 interacted with the hmg1 promoter in yeast one-hybrid system and in vitro. HbCZF1 contains a 1110 bp open reading frame that encodes 369 amino acids. The deduced HbCZF1 protein was predicted to possess a typical C-X7-C-X5-C3-H CCCH motif and RNA recognition motif. HbCZF1 was predominant in the latex, but little expression was detected in the leaves, barks, and roots. Furthermore, in transgenic tobacco plants, over-expression of HbCZF1 highly activated the hmg1 promoter. These results suggested that HbCZF1 may participate in the regulation of natural rubber biosynthesis in H. brasiliensis.


Subject(s)
Hevea/enzymology , Hevea/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Plant Proteins/genetics , Zinc Fingers/genetics , Acetates/pharmacology , Amino Acid Sequence , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cyclopentanes/pharmacology , Electrophoretic Mobility Shift Assay , Ethylenes/pharmacology , Gene Expression Regulation, Plant/drug effects , Hevea/drug effects , Molecular Sequence Data , Oxylipins/pharmacology , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Protein Binding/drug effects , Saccharomyces cerevisiae/metabolism , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Nicotiana/genetics , Transcription, Genetic/drug effects
6.
Genomics ; 104(1): 14-23, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24793160

ABSTRACT

WRKY proteins constitute a large family of transcription factors. In this study, we identified 81 WRKY genes (named HbWRKY1 to HbWRKY81) in the latest rubber tree genome. Tissue-specific expression profiles showed that 74 HbWRKYs were expressed in at least one of the tissues and the other 7 genes showed very low expression in all tissues tested, which suggested that HbWRKYs took part in many cellular processes. The responses of 20 selected HbWRKYs to jasmonic acid (JA) and ethylene (ET) were analyzed in the latex. 17 HbWRKYs responded to at least one treatment, which included 15 HbWRKYs responding to JA treatment, 15 HbWRKYs to ET, which suggested that these HbWRKYs were regulated by JA and ET. We also observed that HbWRKY3, 14, and 55 bind HbSRPP promoter and activate the transcription in yeast. This study suggests that HbWRKY proteins maybe involved in the transcriptional regulation of nature rubber biosynthesis.


Subject(s)
Genes, Plant , Hevea/genetics , Multigene Family , Plant Proteins/genetics , Transcription Factors/genetics , Base Sequence , Gene Expression Regulation, Plant , Latex/biosynthesis , Molecular Sequence Data , Organ Specificity
7.
Plant Physiol Biochem ; 80: 121-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24751399

ABSTRACT

The 14-3-3 proteins are a family of conserved phospho-specific binding proteins involved in diverse physiological processes. Although the genome-wide analysis of this family has been carried out in certain plant species, little is known about 14-3-3 protein genes in rubber tree (Hevea brasiliensis). In this study, we identified 10 14-3-3 protein genes (designated as HbGF14a to HbGF14j) in the latest rubber tree genome. A phylogenetic tree was constructed and found to demonstrate that HbGF14s can be divided into two major groups. Tissue-specific expression profiles showed that 10 HbGF14 were expressed in at least one of the tissues, which suggested that HbGF14s participated in numerous cellular processes. The 10 HbGF14s responded to jasmonic acid (JA) and ethylene (ET) treatment, which suggested that these HbGF14s were involved in response to JA and ET signaling. The target of HbGF14c protein was related to small rubber particle protein, a major rubber particle protein that is involved in rubber biosynthesis. These findings suggested that 14-3-3 proteins may be involved in the regulation of natural rubber biosynthesis.


Subject(s)
14-3-3 Proteins/classification , 14-3-3 Proteins/metabolism , Hevea/metabolism , Plant Proteins/metabolism , Cyclopentanes/pharmacology , Ethylenes/pharmacology , Hevea/drug effects , Oxylipins/pharmacology , Phylogeny , Plant Proteins/classification
8.
Mol Biol Rep ; 39(4): 4491-7, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21947841

ABSTRACT

The cDNA encoding a 14-3-3 protein, designated as Hb14-3-3c, was isolated from Hevea brasiliensis. Hb14-3-3c was 1,269 bp long containing a 795 bp open reading frame encoding a putative protein of 264 amino acids, flanked by a 146 bp 5'UTR and a 328 bp 3' UTR. The predicted molecular mass of Hb14-3-3c is 29.67 kDa, with an isoelectric point of 4.52 and the deduced protein showed high similarity to the 14-3-3 protein from other plant species. Expression analysis revealed more significant accumulation of Hb14-3-3c transcripts in latex than in leaves, buds and flowers. The transcription of Hb14-3-3c in latex was induced by jasmonate and ethephon. Overproduction of recombinant Hb14-3-3c protein gave the Escherichia coli cells more tolerance on Co(2+), Cu(2+) and Zn(2+). Through yeast two-hybrid screening, 11 interaction partners of the Hb14-3-3c, which are involved in rubber biosynthesis, stress-related responses, defence etc., were identified in rubber tree latex. Taking these data together, it is proposed that the Hb14-3-3c may participate in regulation of rubber biosynthesis. Thus, the results of this study provide novel insights into the 14-3-3 signaling related to rubber biosynthesis, stress-related responses in rubber tree.


Subject(s)
14-3-3 Proteins/genetics , Genes, Plant/genetics , Hevea/genetics , Plant Proteins/genetics , 14-3-3 Proteins/metabolism , Cloning, Molecular , Cyclopentanes/pharmacology , Electrophoresis, Polyacrylamide Gel , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Hevea/drug effects , Latex/metabolism , Molecular Sequence Data , Organ Specificity/drug effects , Organ Specificity/genetics , Organophosphorus Compounds/pharmacology , Oxylipins/pharmacology , Plant Proteins/metabolism , Protein Binding/drug effects , Protein Isoforms/metabolism , Recombinant Proteins/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...