Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Inflamm Res ; 17: 1397-1411, 2024.
Article in English | MEDLINE | ID: mdl-38476473

ABSTRACT

Purpose: To investigate the correlation between M1/M2 macrophages (M1/M2 Mφ) and cell death mode under Mycobacterium tuberculosis (Mtb) infection. Methods: Raw gene expression profiles were collected from the Gene Expression Omnibus (GEO) database. Genes related to different cell death modes were collected from the KEGG, FerrDb and GSEA databases. The differentially expressed genes (DEGs) of the gene expression profiles were identified using the limma package in R. The intersection genes of M1/M2 Mφ with different cell death modes were obtained by the VennDiagram package. Hub genes were obtained by constructing the protein-protein interactions (PPI) network and Receiver Operating Characteristic (ROC) curve analysis. The expression of cell death modes marker genes and Hub genes were verified by Western Blot and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Results: Bioinformatics analysis was performed to screen Hub genes of Mtb-infected M1 Mφ and different cell death modes, naming NFKB1, TNF, CFLAR, TBK1, IL6, RELA, SOCS1, AIM2; Hub genes of Mtb-infected M2 Mφ and different cell death modes, naming TNF, BIRC3, MAP1LC3C, DEPTOR, UVRAG, SOCS1. Combined with experimental validation, M1 Mφ under Mtb infection showed higher expression of death (including apoptosis, autophagy, ferroptosis, and pyroptosis) genes compared to M2 Mφ and genes such as NFKB1, TNF, CFLAR, TBK1, IL6, RELA, AIM2, BIRC3, DEPTOR show differential expression. Conclusion: NFKB1, TNF, CFLAR, TBK1, IL6, RELA, AIM2 in Mtb-infected M1 Mφ, and TNF, BIRC3, DEPTOR in Mtb-infected M2 Mφ might be used as potential diagnostic targets for TB. At early stage of Mtb infection, apoptosis, autophagy, ferroptosis, and pyroptosis occurred more significantly in M1 Mφ than that in M2 Mφ, which may contribute to the transition of Mtb-infected Mφ from M1-dominant to M2-dominant and contribute to the immune escape mechanisms of Mtb.

2.
Mol Cell Biochem ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38217838

ABSTRACT

The metabolism of long-chain polyunsaturated fatty acids (LCPUFAs) is closely associated with the risk and progression of colorectal cancer (CRC). This paper aims to investigate the role of LCPUFA in the crosstalk between intestinal microflora and macrophages, as well as the effects of these three parties on the progression of CRC. The metabolism and function of LCPUFA play important roles in regulating the composition of the human gut microflora and participating in the regulation of inflammation, ultimately affecting macrophage function and polarization, which is crucial in the tumor microenvironment. The effects of LCPUFA on cellular interactions between the two species can ultimately influence the progression of CRC. In this review, we explore the molecular mechanisms and clinical applications of LCPUFA in the interactions between intestinal microflora and intestinal macrophages, as well as its significance for CRC progression. Furthermore, we reveal the role of LCPUFA in the construction of the CRC microenvironment and explore the key nodes of the interactions between intestinal flora and intestinal macrophages in the environment. It provides potential targets for the metabolic diagnosis and treatment of CRC.

3.
Curr Med Chem ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38231073

ABSTRACT

Iron, copper, and zinc play integral roles in the battle against Mycobacterium tuberculosis (Mtb) infection; however, they are often trapped between nutrients and toxins, posing a significant challenge to macrophages and Mtb to utilize them. Due to this two-sided effect, macrophages and Mtb strictly regulate metal uptake, storage, and excretion. This review discusses the balanced regulation of iron, copper, and zinc in macrophages and Mtb during infection, focusing on the intracellular metal regulatory system. Macrophages typically use the two-sided effect of metals to limit Mtb access to nutrients or poison them. Mtb has developed a metal metabolism regulatory mechanism compatible with the nutritional immune strategy. This includes the mediation of relevant metalloproteins and metalloenzymes to maintain the multimetal balance. This review also explored the regulation of metal metabolism homeostasis in macrophages resistant to Mtb infection, providing a theoretical foundation for identifying potential clinical targets for Mtb infection, developing metalloid anti-tuberculosis drugs, and understanding the immune mechanisms against intracellular Mtb infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...